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Introduction 

The current wave of artificial intelligence (AI) innovation is being driven by a fifteen-year-old 
paradigm shift in AI research. That shift was just the most recent in a series of such shifts since 
AI got its modern start in 1956. What could be the next such shift in AI research? Below, we 
describe why this question is important to researchers, practitioners, and policymakers, and we 
provide six examples of paradigms that may help define the next generation of AI research. 

Why Envision AI Research Futures? 

Envisioning the future is challenging. It is difficult for researchers to see beyond the current 
scientific paradigm, for technologists to see beyond the latest technological developments, and 
for policymakers to see beyond the issues those new technologies raise. This is particularly 
true when powerful new technologies sweep rapidly into public awareness, as AI technologies 
have recently done.  

However, it is useful to recall that the current scientific and technical moment for AI — powered 
by deep neural networks, large language models, and other foundation models — is just the 
latest in a series of such moments that the field has experienced in its comparatively brief 
history. Prior research paradigms for AI include symbolic processing, knowledge-based 
systems, and statistical machine learning. Each paradigm was hailed as ushering in a new age 
of AI, each produced a series of transformative applications, and each was eventually 
superseded by one or more new paradigms that built on those previous insights. 

1 Full contributors list: cra.org/ccc/ai-futures-whitepaper-contributors 
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This suggests an obvious question: What’s next for AI research? That is, what comes after the 
current age of deep neural networks and foundation models? 

Answers to this question are unlikely to emerge easily because the transience of the current 
paradigm can be difficult to imagine. When dominant, a paradigm appears to be the end point, 
the apotheosis of a long line of precursors that merely paved the way for the current (and final) 
paradigm. One reason for this is that early partisans who successfully bring a paradigm into 
dominance within a field naturally focus attention on the capabilities of the new paradigm, 
rather than on its limitations. Typically, those limitations only become visible later. A second 
reason is that the current paradigm succeeds because it provides new capabilities for research 
and development, and researchers are often busy exploiting those capabilities rather than 
asking what comes next. A third reason is that successors to a dominant paradigm can be 
extremely challenging to identify. Such successors are often only obvious in retrospect, after 
the limitations of the prior paradigm (and the benefits of a successor paradigm) become 
evident. 

That said, now may be a particularly good time to consider possible futures for AI research. 
The current paradigm of foundation models based on deep neural networks has been dominant 
for less than 15 years, but some of its limitations have already started to become apparent.2 
Some researchers, both inside and outside of the current paradigm, have begun to suggest 
that this paradigm alone won’t be sufficient to reach many of the desired goals of AI. 

Identifying and describing concrete visions of possible futures for AI research has substantial 
benefits. First, such visioning can demonstrate the value of broad-based research programs 
that include efforts to both exploit the current paradigm and to explore the value of alternative 
paradigms. Such a balanced approach has been responsible for all prior paradigm shifts in AI 
research. In particular, federal research funds have supported exploration of alternative 
paradigms long before it was obvious that one of them would become dominant and lead to 
major new technological capabilities. Second, concrete visions of alternatives to the current 
paradigm can help researchers themselves focus on more revolutionary advances, rather than 
only incremental advances that exploit the current paradigm. Finally, concrete descriptions of 
possible futures for AI research can help correct a potential misconception among the public 
and some policy makers that “AI is done, except for the scaling.”3 

The CCC Task Force on AI Research Futures  
The authors of this report are members of the Computing Community Consortium (CCC) Task 
Force on AI Research Futures. This Task Force was formed to identify, describe, and 
disseminate possibilities for “what comes next” — a set of potential future paradigms for AI 

3Many of the technical performance metrics of foundation models have exhibited power-law like behavior. This has 
led to more general statements about the expected overall intelligence of such models in the future. For example, 
Sam Altman of OpenAI has said that “[t]he intelligence of an AI model roughly equals the log of the resources used 
to train and run it…. It appears that you can spend arbitrary amounts of money and get continuous and predictable 
gains; the scaling laws that predict this are accurate over many orders of magnitude” (Altman 2025). 

2For example, researchers have identified significant limitations of LLMs in classic AI reasoning tasks involving 
planning (e.g., Valmeekam et al. 2025) and causal reasoning (e.g., Jin et al. 2023).  
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research. To gather input, the Task Force convened sets of AI experts to propose, describe, 
refine, and discuss potential future directions for AI research in roundtable discussions. Initially, 
the roundtable discussions were held with Fellows of the Association for the Advancement of 
Artificial Intelligence (AAAI) during and shortly after the AAAI Conference on Artificial 
Intelligence in February and March 2025. The Task Force subsequently held additional 
roundtables with AI researchers throughout March 2025. The ideas expressed in this report, 
while influenced by the roundtable discussions, are those of the authors, and not the 
individuals with whom we spoke. 

This CCC effort complements another effort — the AAAI 2025 Presidential Panel on the Future 
of AI Research — which released a report on their efforts in March 2025.4,5 That report aimed to 
“define the current trends and the research challenges still ahead of [the AI research 
community] to make AI more capable and reliable…”. The methodology for gathering input for 
the AAAI 2025 Presidential Report included the development of a survey on potential futures 
and gathering data from members of AAAI. 

What are “AI Research Futures”? 
Both at the outset of the Task Force’s work and through the roundtable discussions, we 
continually refined what we meant by a “future” for AI research. We ultimately identified four 
criteria that we used to elicit and refine the specific futures presented in this document.  

First, research futures should be relatively unified and bounded paradigms of research. That is, 
some research projects should be consistent with a given future, while others should not. 
Second, research futures should be possible, but not necessarily likely. We are not trying to 
predict the future, but instead identify ways that AI research might progress, depending on 
various factors. Third, research futures should describe both ends and means. Many 
discussions about the future of AI research identify desirable “ends” for AI research (i.e., new 
capabilities that would be useful in future AI technologies). However, it is far less frequent (and 
more challenging) to identify the “means” for producing those ends (i.e., research approaches 
that might credibly produce those new capabilities). Finally, research futures should be 
motivated by specific technical issues. Examples include focusing on addressing one or more 
shortcomings of current AI systems (e.g., embodied AI) or building on a recently emerging 
technical possibility (e.g., quantum AI). 

Prospective AI Research Futures 
Below are six AI research futures that meet the criteria outlined above: neuro-symbolic AI, 
neuromorphic AI, embodied AI, multi-agent AI, human-centered AI, and quantum AI. The 
research futures described below are neither mutually exclusive nor comprehensive. However, 
they provide concrete examples of approaches that might take AI research in important new 
directions. 

5During one of the Task Force’s roundtables, the AAAI President, Francesca Rossi, noted that the work described in 
AAAI’s report is complementary to the work of the CCC Task Force. 

4Rossi et al. (2025). 
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Neuro-Symbolic AI 

Neuro-symbolic AI merges deep neural networks, which excel at learning patterns from data, 
with symbolic AI, which enables reasoning based on logic and prior knowledge.6 This 
integration aims to overcome several limitations of deep neural networks alone. It could 
significantly enhance reliability by incorporating domain knowledge and leveraging available 
input structures. It could improve accountability, particularly where the opacity of neural 
networks limits their utility. Finally, neuro-symbolic AI could achieve greater generalization by 
combining logic and concepts in diverse ways, enabling systems to move beyond data 
distributions explicitly represented in training data. 

However, the neural and symbolic paradigms are very different. While each paradigm has 
distinct advantages, their differences hinder seamless integration. Neural networks operate on 
sub-symbolic, distributed representations, where knowledge is encoded across a vast number 
of interconnected neurons through learned weights and biases. Their distributed nature makes 
it difficult to extract and manipulate explicit, human-readable symbols. Bridging this gap 
requires complex mapping mechanisms that attempt to translate between continuous, 
high-dimensional neural activations and discrete, interpretable symbols, and vice versa. 
Furthermore, the divergent execution modes of neural and symbolic methods pose significant 
challenges for creating a unified system. Neural networks excel at pattern recognition, 
generalization from data, and handling noisy or incomplete information. Their performance 
depends heavily on the quantity and quality of training data. In contrast, symbolic AI excels at 
tasks requiring explainability, formal verification, and adherence to predefined reasoning 
methods. It can provide clear, step-by-step derivations for its conclusions. A key area of 
research is developing hybrid architectures that facilitate dynamic switching or synergistic 
cooperation between these inductive and deductive approaches, demanding innovative 
solutions for control flow, information exchange, and conflict resolution between their 
respective outputs. 

Research in neuro-symbolic AI focuses on identifying integration strategies for neural and 
symbolic modes. There are examples of neuro-symbolic approaches that provide  foundations 
for this research, but researchers have not identified a universal approach or an understanding 
of which approaches are likely to lead to a generalized neuro-symbolic model. Current efforts, 
for example, aim to improve the accuracy of LLMs by using domain knowledge and logic to 
prune hallucinations or to be more capable by invoking symbolic tools. The longer-term goal is 
to build richer synergies that facilitate the novel application of known concepts and 
abstractions to understand and solve new problems. To uncover these synergies, researchers 
are constructing richer datasets that combine neural inputs with symbolic targets, new 
architectures that are both differentiable and symbolic to make the entire hybrid system 
trainable with gradient-based optimization, and new frameworks and tools to lower the 
adoption barrier for integrating neural and symbolic elements. 

6For more information, see recent surveys on the history and scope of neuro-symbolic approaches, for example 
Buyan, et al. (2024). There are arguments for the potential of recent advances in LLMs to spark new interest in 
neuro-symbolic AI to address the Grounding Problem, see Maher, et al. (2024). 
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Neuromorphic AI 

Neuromorphic computing uses computational hardware whose physical structure mimics some 
key aspects of the neural tissue of humans and other animals. Specifically, neuromorphic 
computing devices use hardware elements — such as transistors, memristors, spintronic 
memories, and threshold switches — to emulate the operation of neurons. Over the past 
several decades, a variety of such neural hardware has been designed, constructed, and 
evaluated, producing a diverse array of systems all grouped under the general category of 
neuromorphic computing.7 

The current dominant paradigm of AI research focuses on deep neural networks, and thus can 
be said to be “brain-inspired”. However, deep neural networks can be extremely 
power-intensive, particularly when used to implement systems such as large language models. 
In contrast, neuromorphic approaches attempt to directly mimic the structure and behavior of 
neurons in hardware. These approaches typically excel in applications that aim to minimize 
size, weight, and power consumption. In addition, neuromorphic hardware tightly couples 
memory and computation, thus minimizing latency.  

Neuromorphic approaches to AI have benefited from at least two recent trends in computer 
hardware and applications. First, developments in neuromorphic hardware have accelerated in 
recent years, with an increasing number of chips and larger systems becoming commercially 
available. Second, practitioners have shown increasing interest in intelligent mobile and 
embedded devices, where size, weight, and power considerations are particularly important. 
Such applications are a relatively poor match for deep neural networks and a far better match 
for neuromorphic systems. 

Despite these advantages, research in neuromorphic computing continues to face significant 
challenges. First, computational results from neuromorphic hardware can vary from run-to-run 
and machine-to-machine, and this can decrease the accuracy and reliability of any given 
computation. Second, despite a long history, research in neuromorphic computing is still fairly 
sparse, thus limiting the availability of standard methods, systems, and benchmarks. Finally, 
research in neuromorphic computing draws on concepts and principles from multiple fields — 
including neuroscience, computer science, electrical engineering, mathematics, and physics. 
This multidisciplinary character can make the field less attractive to early career researchers 
and pose a steep learning curve for those who do choose to pursue research in this area. 

Embodied AI 

Embodied AI represents a paradigm that moves beyond purely computational intelligence to 
systems that possess a physical presence in the world. Unlike current dominant paradigms that 
focus on disembodied AI, embodied AI agents perceive, act, and learn within physical 
environments or (for computational scaling with a loss of some realism) high-fidelity 
simulations.8 Direct interaction with the physical world provides embodied AI with unique 
access to rich, multimodal sensorimotor data — including proprioception, touch, vision, and 

8For more discussion of embodied AI, see: Brooks (1991); Pfeifer & Fumiya (2004); and Deitke et al. (2022).  

7For a more detailed introduction to  neuromorphic AI, see: Kudithipudi et al. (2025); and Muir & Sheik (2025). 
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sound — that is intrinsically grounded in reality. This access to "physical data" is fundamentally 
different from the symbolic and statistical patterns that large language models infer from vast 
training sets of human-generated information, allowing embodied AI the potential to develop a 
deeper understanding of causality, spatial relationships, and object properties through direct 
experience, mirroring the way biological intelligence develops. 

The ability of embodied AI to gather and interpret data directly from the physical world, in a 
way that current deep learning approaches cannot, could lead to fundamental breakthroughs. 
For instance, the implicit understanding of physics, object permanence, and human-robot 
interaction that arises from direct physical engagement could enable a more grounded and 
robust form of intelligence that contrasts sharply with the often brittle and error-prone 
"understanding" of the physical world exhibited by LLMs. Building on experience rather than 
inference allows the accumulation of rich, real-world data and gives embodied AI the potential 
to achieve levels of robust common sense and dexterous manipulation that are critical for 
deployment in unstructured human environments. 

One primary hurdle is the sheer complexity of real-world environments, which are dynamic, 
unpredictable, and necessitate robust perception and action capabilities under varying 
conditions. While LLMs enable some types of common-sense reasoning based on abstract 
linguistic patterns, embodied AI must contend with the physical world's tangible uncertainties 
and continuous data streams. The creation of hardware that is both sophisticated enough for 
complex tasks and resilient enough for continuous physical interaction remains a substantial 
engineering challenge, encompassing issues of power, durability, and miniaturization. 
Furthermore, developing effective learning algorithms for embodied agents requires addressing 
problems of sample inefficiency, safe exploration in physical spaces, and the transfer of 
learned skills from simulation to reality (the "sim-to-real" gap), all of which are uniquely 
exacerbated by the need to interact with physical dynamics. 

Multi-Agent AI 

Multi-agent AI moves beyond today’s AI systems to a collaborative ecosystem of specialized AI 
agents. In this paradigm, multiple independent AI agents, each possessing distinct capabilities, 
knowledge, and objectives, interact and coordinate to achieve complex overarching goals. 
These agents can communicate, negotiate, and even learn from each other within a shared 
environment. This distributed intelligence allows for emergent behaviors and more robust, 
adaptive solutions to problems that would be intractable for a monolithic system. Examples 
range from autonomous driving systems where agents handle perception, planning, and 
control, to complex supply chain management where agents optimize logistics, inventory, and 
demand forecasting.9 

Multi-agent AI offers a clear contrast to LLM-based approaches, which, while powerful in 
natural language processing and generation, typically operate as single, centralized entities. 
Traditional LLMs excel at tasks that require extensive knowledge recall or creative text 

9For a more detailed introduction and discussion of multi-agent AI, see: Shoham & Leyton-Brown (2008), Zhang et 
al. (2021), Hadfield et al. (2025). 
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generation based on a single prompt. However, they are less effective in tasks requiring 
multi-step reasoning, dynamic problem-solving, diverse forms of expertise, or real-time 
interaction with complex environments. Multi-agent AI, conversely, leverages specialization and 
parallel processing. Instead of one large model attempting to do everything, a multi-agent 
system can deploy a "team" of agents, each fine-tuned for a specific role (e.g., a "planner" 
agent, a "coder" agent, a "critic" agent). This division of labor leads to improved accuracy, 
reduced hallucination, enhanced scalability, and the ability to handle more dynamic and 
complex scenarios by allowing agents to validate each other's work and adapt to changing 
conditions. 

Realizing the potential of multi-agent AI requires the development of robust communication 
protocols and coordination mechanisms that enable effective interaction and information 
exchange between diverse agents. This includes establishing standard ontologies for shared 
understanding, designing effective message passing systems, and implementing frameworks 
to manage task allocation, conflict resolution, and collaborative decision-making among 
agents. Further, the ability for agents to learn and adapt over time, both individually and 
collectively, is crucial. This necessitates advancements in reinforcement learning, 
multi-objective optimization, and mechanisms for knowledge sharing across the agent network. 

Human-Centered AI 

Human-centered AI starts with the principle that the complementary nature of human and 
machine cognition implies that we can have significantly more powerful systems through 
integration of both. That is, this paradigm emphasizes collaboration and coordination between 
humans and AI systems to augment human capabilities, rather than attempting to have 
autonomous AI systems that function without human interaction to replace human 
intelligence.10 While human-AI teaming is already a major area of research focus, much of that 
work has emphasized user experience, interaction design, and human factors. However, 
effective human-centered AI may require AI systems that have social intelligence, in the sense 
of being able to detect and respond to complex social cues, infer complex cognitive and 
affective states of human teammates, interact in temporally extended and non-manipulative 
ways, and reason about complicated and context-sensitive human social networks.  

The goal of this approach to AI research, design, and development would be systems that 
contribute to the social interactions and group performance that underlie so many human 
successes. Such technology would stand in stark contrast with the current efforts to develop AI 
systems that can function autonomously, often with the goal of replacing human cognition. 

Social cognition and interactions have been widely studied in the cognitive and neural 
sciences, but these insights have only rarely made their way into AI research. For example, 
multiple studies have implemented simple versions of so-called “theory of mind” inference in AI 
systems, but these inferential systems have not regularly been incorporated into AI systems 
that interact with humans in the real world. The fields of affective computing, social robotics, 
and socially assistive robotics have arguably done the most research in this space, but those 
insights have not been incorporated into the field of AI more generally. 

10For more discussion of human-centered AI, see: Ozmen Garibay (2023); Riedl (2019); and Shneiderman (2022). 
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A central challenge is to redesign AI research so that social interactions and understanding are 
part of the foundation of the AI system, rather than being added later through (perhaps 
sophisticated) interfaces. Research comparing social and asocial animal species has 
consistently found very large differences in cognitive capabilities, which suggests that AI 
systems designed “from the ground up” to be social would potentially be quite different from 
our current systems. However, such a redesign would require not only research support, but 
also a significantly more multidisciplinary approach that incorporates insights from a range of 
social science and animal cognition disciplines. 

Quantum AI 

Quantum AI is a still somewhat speculative paradigm of AI research based on exploiting 
emerging principles and methods of quantum computing. Quantum computing has come to 
include a wide variety of theoretical ideas and, more recently, practical technologies for 
harnessing physics in unique ways to execute computational processes. Quantum computing 
exploits the properties of physics found in the various states of matter to “compute” in radically 
different ways. A central quantum computing concept is that of a quantum bit or “qubit”. In 
contrast to a traditional zero-or-one “bit”, a qubit uses the superposition property of matter to 
take on states in which the qubit is simultaneously both zero and one. Quantum algorithmic 
approaches to classical computing tasks have been of deep theoretical interest since the early 
1990s and, in recent years, quantum machines have made implementation of these algorithms 
physically possible.11 Quantum computing is one of several areas in which advances in the 
broader field of computer science can help drive progress in AI. 

For example, quantum computing can be applied to optimization and search problems in AI. In 
this context, quantum phenomena are employed as an analog to stochastic search or statistical 
optimization. A quantum approach can enable rapid convergence on the minima or maxima of 
the energy landscape without having to perform a discrete search over the variable 
assignments. Another emerging opportunity for quantum devices is their use for physical 
simulation. Quantum devices promise to be able to perform simulations using direct atomic 
physics—rather than as discrete approximations. As such, quantum devices could prove useful 
for understanding states in the physical world, creating more accurate models, and improving 
the fidelity of what computers are capable of. While these capabilities are not specific to AI, 
they could prove particularly useful for AI techniques that make explicit inferences using a 
world model. 

The use of quantum computing for AI faces an array of challenges. Three particularly stand out. 
First, for a given AI problem to be aided by quantum computing, an appropriate problem 
encoding must be developed that reduces the traditionally intractable aspects of an AI problem 
to tasks that can be executed on a quantum device. Second, using quantum devices as a 
component in an AI system requires digital-to-analog conversion of key data required by the 
quantum component, as well as analog-to-digital conversion of the quantum component’s 
output. These conversions are time consuming and prone to errors and noise, and the 

11There are many references around topics of quantum computing and AI.  Specific to the use of quantum machines 
for search, optimization, and machine learning problems there are many dozens of papers.  Three of a survey nature 
are: Biamonte et al. (2017); Schuld et al. (2014); and Rajak et al. (2022). 
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computational cost of these conversions can sometimes outweigh any benefits gained from 
the quantum acceleration. Third, the scale of quantum computing devices, usually represented 
as the number of qubits, is very limited in comparison to traditional CMOS devices.12 Hence, 
state spaces requiring thousands of variables are out of direct reach for the current generation 
of quantum hardware. 

Near-Term Advances in Deep Neural Networks 
An eventual paradigm shift in AI research is virtually inevitable, but the timing and nature of that 
paradigm shift are far from certain. When it does occur, the shift may be toward one or more of 
the directions described above, or it may be toward a currently unforeseen paradigm. That 
said, before (or even after) such a shift occurs, continued improvements based on the current 
paradigm of deep networks will presumably continue, and many of those improvements will 
originate from the rich interactions between academic and industrial research.  

Since the early 2010s, large deep neural networks (DNNs) have been the dominant paradigm in 
AI due to empirical evidence demonstrating performance improvements over earlier types of 
machine learning models across a wide range of tasks. These improvements were driven 
primarily by a combination of algorithmic advances, increases in the scale of computation, and 
the availability of large-scale data. Huge investments have been made in large foundation 
models using transformer architectures, pre-trained on massive amounts of data, leading to 
impressive capabilities in natural language understanding and generation, vision, audio, and 
multi-modal tasks. This has enabled wide-ranging applications from conversational AI to 
creative content generation and complex decision-making.  

There is a growing recognition, however, that the future of scaling for DNNs is limited, with 
diminishing performance returns relative to the costs of training, the finite nature of high-quality 
data, and the various problems associated with ever-increasing energy consumption and cost. 
This has led to an increased focus among researchers in both academia and industry on 
efficient scaling techniques, sparse and modular architectures, model compression, combining 
specialized smaller models, employing mixtures of experts, exploring synthetic data, and other 
directions that aim to provide alternatives to brute-force scaling. Interestingly, many of these 
techniques were originally developed for AI systems from previous paradigms, but have been 
repurposed to improve DNN performance. 

Modern AI systems are complex ecosystems integrating numerous components beyond the 
core foundation DNN model, including prompt management, connecting to external memory 
and knowledge sources, additional reinforcement learning-based training, fine-tuning modules, 
and more. This modularity allows for greater flexibility, efficiency, and robustness than a single 
DNN trying to do everything. Many of these components of the AI stack are DNNs, though 
generally smaller and more specialized than the core foundation model. Yet these current 
models still fall short of important goals such as interpretability, continual learning, and 
alignment with complex values and preferences, and there is currently no clear indication of 

12Certain commercial machines report having on the order of 1000s of physical qubits, but the number of logical 
qubits available for computing purposes is often considerably smaller due to the redundancies required for quantum 
error correction. 
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when these approaches will plateau and no clear roadmap to the next architectural 
breakthrough.  

These trends point toward a new generation of heterogeneous DNN-based systems to increase 
both performance and capabilities. Such systems could support improvements in reasoning, 
causal understanding, complex planning, robustness, long-term memory, and other critical 
areas that the current generation of large foundation models has not yet mastered. Other 
existing directions of research may be promising for next-generation DNNs, including new 
models of attention, relational architectures, state-space sequence models, 
dynamic/adaptive/self-modifying networks, architectures for neural operator learning, networks 
explicitly structured for reasoning (e.g., causal representation learning), and networks with 
domain-specific information embedded directly into layers. The integration of domain 
knowledge or constraints into networks may significantly improve performance, interpretability, 
and reliability. For example, physics-informed neural networks (PINNs) directly integrate 
knowledge of physical laws, principles, and equations; graph neural networks represent the 
relational structure of the data; and causal inference neural networks aim to learn causal 
relationships between variables rather than just correlations.  

Seeding the Next AI Revolution 
One of the most visible recent developments in AI has been the rapid emergence of intense 
industrial competition among both startups and traditional tech companies to deploy AI 
technology. Virtually all these companies have staked their future on exploiting the unexpected 
capabilities of deep neural networks, large language models, and other foundation models. All 
are building on a common base of existing research results and computing technology with 
relatively little “moat” to separate their products from those of other companies. This has 
resulted in fierce competition for talent, capital, customers, and ideas.  

Such fierce competition can be good for consumers, as it focuses companies on rapid 
development and deployment of products that satisfy customer needs. However, it further 
reinforces one of the most common limitations of industrial research — a focus on short-term 
product development rather than long-term, paradigm-shifting research. That is, industrial 
research tends to focus on exploiting and extending what has already been shown to work 
well, rather than pursuing riskier research directions with higher long-term payoff. 

Such long-term, paradigm-shifting research is where academic research typically excels. 
Indeed, the current paradigm of AI research resulted from decades of academic research on 
neural networks, language models, computer vision, and other areas that were predominantly 
supported by government funding. However, that research was not supported because the 
recent extraordinary success of deep neural networks was easy to foresee. Rather, that support 
was part of an intentional investment strategy to support a diversified portfolio of alternative 
paradigms, explicitly acknowledging and managing the uncertainty about where revolutionary 
new technological developments would emerge. 

Exploring many of the potential future paradigms for AI research requires the sort of sustained 
effort that only government funding typically supports. For example, successfully fostering 
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multidisciplinary paradigms (e.g., neuromorphic AI, quantum AI, and embodied AI) is typically 
accomplished by sustained federal funding of dedicated research institutes. Such institutes 
bring together a critical mass of research talent in the disparate specialties that make up the 
field and keep those researchers in close proximity for a sufficient time for collaborations to 
solidify and flourish. This environment can also convince new students to enter the field and 
can foster early-career researchers and early-stage commercialization efforts. 

The United States is already benefiting tremendously because the current AI revolution has 
largely been centered within the borders of North America. However, what is true of the current 
revolution need not be true of the next revolution. Without a sustained and robust portfolio of 
research efforts in both industry and academia, the next AI revolution could well be centered in 
other nations, with those nations reaping the benefits and controlling the direction of future 
innovation in AI. 
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