
Leading Initiatives, Building New
Programs, Negotiating Skills

Make a Difference!

Part of your job is to make the world a
better place.

You get to choose educational,

research, and service initiatives that
are meaningful to you.

Leading New Initiatives

Research, Teaching, & Service
Initiatives

Improve some process
 curriculum, admissions, hiring, conference,
 reviewing, IEEE, ACM, etc.

Create something new
Research Project
University Research Center
Workshop
Undergraduate/Graduate Program

Elements of Success

•  Passion
•  Clear statement of objective
•  Buy-in from stake holders
•  Determine & obtain resources

•  People, time, financial, staff, space,

•  Iterate as needed
•  When are you finished?

Two of My Initiatives

1. Double blind reviewing
 Improve reviewing process

 Improve my research community
DaCapo Research Project
•  Dynamic optimization & memory

management
•  Faculty & students from 4+ Universities

Portable Performance on Asymmetric Multicore Processors

Paper #426

Abstract
Technology constraints on power are steering chip man-
ufacturers to build single-ISA Asymmetric Multicore
Processors (AMPs) with big and small cores. To deliver
on their energy e�ciency potential, schedulers must
consider core sensitivity, load balance, and the critical
path. Applying these criteria e↵ectively is challenging,
especially for complex and non-scalable multithreaded
applications. On the software front, managed program-
ming languages are proliferating. We demonstrate that
managed language runtimes provide a unique oppor-
tunity to abstract over AMP complexity and inform
scheduling decisions with rich semantics such as thread
priorities, locks, and parallelism—information not di-
rectly available to the OS or application.

We present the WASH AMP scheduler, which (1) au-
tomatically identifies and accelerates critical threads;
(2) respects thread priorities; (3) considers core avail-
ability and thread sensitivity; and (4) proportionally
schedules threads on both big and small cores to op-
timize performance and energy. We introduce new
dynamic analyses that automatically identify critical
threads and classify application parallelism as sequen-
tial, scalable, or non-scalable. Compared to the default
Linux CFS scheduler and prior work, WASH improves
average performance by 20% and energy by 9% on
frequency-scaled AMP hardware (not simulation). Per-
formance advantages grow to 27% as hardware asym-
metry increases. Performance advantages are robust
to a complex multithreaded adversary independently
scheduled by the OS. No prior AMP scheduling work
optimizes these workloads.

1. Introduction
For decades, faster processors delivered hardware per-
formance improvements transparently to software. To
meet technology constraints, such as power and wire de-
lay, vendors moved to multicore processors and recently
shipped parallel Single-ISA Asymmetric Multicore Pro-
cessors (AMPs) [23]. These changes increase the burden
on software to realize the potential of complex hard-
ware. This paper shows how to meet this challenge by
exploiting opportunities uniquely available to managed
language Virtual Machine (VM) runtimes.

New hardware By combining big high-performance
cores and small energy-e�cient cores, AMPs promise
to improve performance and energy e�ciency, while
meeting power and area constraints. Big cores are in-
tended to accelerate critical latency-sensitive parts of
the workload, while small cores deliver throughput by
e�ciently executing parallel workloads. AMPs are al-

ready in the mobile market [23] and their reach is ex-
pected to include desktops and servers. We target desk-
top and server because their ecosystems are mature,
with highly optimized VMs, benchmarks, and profiling
systems. Extracting performance from AMP hardware
is challenging and complicated by dynamism due to core
frequency and voltage scaling, core defeaturing, simul-
taneous multithreading (SMT) resource contention, and
competing applications. Application programmers can-
not be required to manage this complexity.

Managed languages Managed languages are in-
creasingly popularity on mobile, desktops, and servers
in part due to memory safety and portability. How-
ever, most prior work for AMP uses native workloads
that manifest straightforward forms of parallelism com-
pared to managed workloads. Because managed run-
time virtual machines (VMs) contain helper threads
(garbage collectors, compilers, profilers, etc.) that run
together with the application, they present inherently
messy workloads with a variety of threads with di↵erent
priorities and amounts of work. Moreover, managed ap-
plications often exhibit concurrency without scalability,
for example, from asynchronous event processing.

Exploiting AMP We show that managed languages
o↵er a unique opportunity to exploit AMP because they
already profile, optimize, and schedule applications,
and have a priori knowledge about helper threads. We
present a fully automated runtime system that trans-
parently delivers on the performance and energy e�-
ciency potential of AMP hardware. Our scheduling al-
gorithm handles thread priorities, complex non-scalable
multithreaded workloads, and |threads| � |cores| that
prior work has neglected [13, 27]. We present a compre-
hensive AMP runtime system that handles arbitrary
numbers of threads; automatically identifies applica-
tion parallelism (none, scalable, non-scalable); assesses
and manages thread criticality, progress, and core sen-
sitivity; respects thread priorities (application threads
are high priority and runtime helper threads are lower
priority); and requires no change to applications.

We successfully exploit three key aspects of a man-
aged runtime. (1) We exploit a priori knowledge of
the managed runtime’s low priority helper threads.
(2) To find contention, we exploit biased locking [4,
6, 12], which cost-e↵ectively identifies true contention,
whereas prior work requires programmer assistance [15,
16] or new hardware [10]. (3) We exploit the VM’s
existing profiling to monitor thread progress, thread
sensitivity to core type, and to periodically reevaluate
scheduling decisions. Neither the OS nor the application
can independently discover this information. The VM

MICRO Submission 426 - DRAFT - please do not distribute 1 2015/5/22

Two of My Initiatives
1. Double blind reviewing
 Improve reviewing process

 Improve my research community
2. DaCapo Research Project

Dynamic optimization & memory
management
Large 5 year ITR grant
Faculty & students from 4+ Universities
Built small research community

Building New Programs

Identifying New Programs

New	

Program	

Compelling	

Problem	

Unique	

Capabili4es	

Urgency	
 or	

Opportunity	

SWOT Analysis

Strengths	

What	
 do	
 you	
 especially	
 well?	

Do	
 you	
 have	
 unique	
 people,	

facili4es	
 or	
 exper4se?	

Weaknesses	

What	
 are	
 you	
 missing?	

	

	

Opportuni/es	

Funding	
 calls	

New	
 people	
 or	
 hiring	

possibili4es	

Threats	

Who	
 else	
 is	
 doing	
 this?	

Are	
 key	
 players	
 on	
 board?	

	

Defining and Socializing a
Vision

Top-­‐down	
 vision	

	

What	
 you’re	
 going	
 to	
 do	
 and	
 not	
 going	
 to	
 do	

Bo7om-­‐up	
 capability	
 assessment	

	

How	
 do	
 the	
 pieces	
 fit	
 together?	

Ar4cular	
 vision	
 Organize	
 and	
 adapt	

Building your Team

Complementary	

strengths	

Understand	
 your	

own	
 strengths	

Shore	
 up	
 your	
 base	

before	
 taking	
 on	

detractors	

Avoid	
 the	
 “uninvite”	

scenario;	
 be	
 aware	
 of	

budget	
 constraints	

Poli4cs	
 should	
 not	

drive	
 your	
 decisions,	

but	
 can’t	
 be	
 ignored	

Examples

“Big Data” in DOE
•  Defining turf
•  Getting people on board
•  Delegating!
Quantum computing
•  Gathering experts
•  Identify strengths
•  Defining turf
•  Finding a leader

Exercise

Initiative Exercise – Pair Up
1.  Define an objective

New Curriculum, Research Project,
Workshop, University center, etc.

2.  Identify stake holders & team
3.  What resources do you need? How will

you obtain them?
People, time, financial, staff, space

4.  Anticipated obstacles? Strategies?
5.  Exit strategy (if needed)

NEGOTIATING SKILLS

Negotiating Skills

•  Getting the resources you need
•  Know what you want

•  Your Wildest Dreams
•  What you need
•  What you cannot succeed without

•  Ask

Negotiating Styles

•  Collaborating
•  Competing
•  Avoiding
•  Compromising
•  Accommodating

Tips

•  Do your homework
•  Ask questions
•  Ask for clarification
•  Use silence
•  Don’t take it personally
•  Thank the other party

Failure

•  Your managers are balancing multiple
priorities

•  Be cheerful, make the end result work
•  Be patient, wait, try again later
•  Let someone else take the lead
•  Move on

Scenarios
1.  Your project and responsibilities have

grown. You need support staff to assist
you. Negotiate with your supervisor.

2.  Your supervisor asks you to take on a
large new responsibility. You are already
running at maximum capacity. Negotiate.

3.  Report out

Resources…Or Not

•  The Only Negotiating Guide You'll Ever
Need: 101 Ways to Win Every Time in
Any Situation, Stark and Flaherty

•  The Art of War, Sun Tzu

Resources

•  Getting to Yes: Negotiating Agreement
Without Giving In, Fisher and Ury

•  How To Win Friends and Influence People,
Dale Carnegie

•  Practice the Art of Effective Negotiation,
http://www.inc.com/articles/
2000/10/20856.html

•  Creating Win/Win Negotiations,
http://www.inc.com/articles/
1999/01/14527.html

Notes

•  See
http://www.isixsigma.com/training/training-
materials-aids/change-game-engaging-
exercises-teach-change/ for 3 great
exercises

