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I. INTRODUCTION

Many of our everyday jobs are defined via a vari-
ety of task-specific constraints. In order for robots to
perform these tasks, the robot’s motion planners must
respect these constraints. To allow robots to collabora-
tively work along side human partners, we also want
these constraints to be easily specified by non-experts.

While a robotic manipulator moves and plans in its
joint or configuration space, many human tasks are
naturally defined in task space. For example, when car-
rying a glass full of water, we typically keep the glass
upright to not spill the contents. For more complex
tasks, we might require the robot’s end effector follow
a particular trajectory, tracing out a specific shape.

Therefore, in addition to joint limits and collision
constraints, we further constrain our motion planner
to follow a specified task space path. Our hope is that
by defining constraints in task space, our constraints
are easy to specify and generalize across scenes. For
example, in Fig.1 a user demonstrates a path by tracing
the robot’s arm, which is visualized to the right.

Several prior approaches involve biasing the robot’s
planner towards the desired motion [1–3] or by formu-
lating this as a controls problem [4].

We began by examining this problem via trajec-
tory optimization. We explored recreating task space
demonstrations by optimizing a joint space path with
respect to a cost function defining the distance between
the demonstration and the task space motion achieved
by the path [5]. While our method produced promising
and exciting results, the optimization process was often
slow and susceptible, as trajectory optimizers are, to
finding a local, not global, minimum.

To overcome this, we formulated our problem as an
instance of graph search, interweaving task and config-
uration space. We propose a method that samples task
space for poses and connects them via configuration
space paths that maintain our constraint. By creating
a graph of feasible sub-paths we can search over the
graph to find our full path. This graph search method
is still an active area of research for us, although we
look forward to the coming results.

II. PROBLEM STATEMENT

We work with a robot manipulator endowed with a
configuration space q ∈ C. We map configurations to
the task space x ∈ SE(3) via forward kinematics to
x = FK(q). We are given a reference path in task space
ξ̄x : [0, 1]→ SE(3).

Fig. 1: On the left hand side, a user demonstrates a task space
trajectory that is visualized on the right. Our goal is to enable the
robot to be able to recreate the shape of the provided demonstration
in the general setting.

Our goal is to produce a path that closely matches
the reference path subject to constraints on the system:

ξ∗ = arg min
ξ∈Ξ
||ξ − ξ̄|| s.t. constraints (1)

Critical to (1) is our distance metric for estimating
the closeness of curves. We formated two path metrics
for closeness based on the discrete one way Hausdorff
and Frechet distances, described below.
One-Way Hausdorff Distance. The Hausdorff distance
is a method for measuring how far apart two subsets of
metric space are [6]. Although originally formulated as
metric for shapes, the one-way Hausdorff distance can
also be applied to curves, point sets and objects [7–9].
Hence for paths, if every point on the path was to find
its closest neighbor on the reference path, the one way
Hausdorff distance would be the longest neighbor to
neighbor distance.
Frechet Distance. The Frechet distance captures the
difference in flow between two curves [10]. The Frechet
distance is commonly explained through an analogy,
where a dog is walking along ξ at speed parameter-
ization α and its owner is walking along ξ̄ at speed
parameterization β [11]. The two are connected via a
leash. The Frechet distance is the shortest possible leash
via some distance metric d such that there exists a pa-
rameterization α and β so that the two stay connected
and move monotonically.

III. TRAJECTORY OPTIMIZATION

Our goal is optimize the paths we produce to be close
to our reference trajectories according to the distance
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Fig. 2: While our initial optimization in (a) does not fully capture the refernce path, we can use splitting (b) and stapling (c) to improve
performance. (d) By manipulating our original paths in task space (black), we can create new paths (blue).

metrics described in Sec. II. We use the power of exist-
ing trajectory optimization algorithms, specifically Tra-
jOpt [12] which handles a broad range of constraints.

We recorded a set of 24 demonstrations and opti-
mized using the Hausdorff or Frechet metric as our
cost function. An example output is shown in Fig.2a
for the Hausdorff (orange) and Frechet (blue) metrics.
While the path in Fig.2a capture the shape to an extent,
it fails to capture the shape entirely. Our optimization
process does not drive our cost to zero in part because
these demonstrations are difficult for an optimizer to
achieve. Many times, the optimizer falls into a local
minimum that is different from our demonstration due
to self-collisions or joint limits.

To produce more accurate demonstrations we there-
fore assist TrajOpt via two methods: split and staple.
These methods add more constraints to to our problem,
thus moving our basin of attraction to new locations.

Using our splitting method, we split our path in
k segments and optimize on each segment. While
this produces improved results (Fig.2b), it provides
assistance evenly when we would prefer to provide
assistance where it is most needed. For stapling, we
begin with a path optimized with a distance metric.
With that metric, we then find the point of of the path
that errors furthest from our reference path. We then
staple that point to the reference path, similarly to the
splitting method, and recurse on the two pieces: the
start to the staple point and the staple point to the end.
We repeat this iteratively until the maximum violation
is below some threshold. An example of stapling is
shown in Fig.2c.

Hence, splitting segments the path in a predefined
way, while stapling segments through a more intelli-
gent method. We can now easily generate a path that
follows a new task space path formed by warping the
original reference path. For example, in Fig.2d, we can
translate our original task space path by 10 cm and use
our optimization to generate a new path.

Despite the success of this method, we are not en-
tirely satisfied. The optimization process often pro-
duces longer than desirable planning times and suffers
from local minima. Therefore, we have begun exploring
a graph search method described below.
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Fig. 3: A visualization of our graph search algorithm in chart space.
We sample our reference trajectory in task space and plan between
in configuration space, respecting the constraint to recreate our
reference trajectory.

IV. GRAPH SEARCH

As an alternate approach to following task space
paths, we draw upon the success of randomized sam-
ple based graph search motion planners [13–15]. Our
goal is to sample on the task space path and plan along
this constraint.

A visualization of the approach can be seen in Fig.3.
The black line represents the reference task space path,
with waypoints sampled at the black dots. For each
point in task space, there are multiple possible inverse
kinematic (IK) solutions in configuration space, visu-
alized as tics in red. Connected points, or edges in
the graph, represent a path from one configuration to
another. To create an edge we require that the path
is feasible and that the path is close to the reference
path according to one of our distance metrics from Sec.
II. Using graph search, such as Dikjsta or A* [16, 17],
we attempt to find a path through the graph, like that
shown in green in Fig.3.

V. DISCUSSION

Over the past year we have examined planning to
follow a path in task space. We have explore two
methods, trajectory optimization and graph search, and
will continue to investigate these methods futher. Our
goal is enable robots to easily and quickly plan in task
space, thus increasing their skill set and usability as
collaborative partners.



VI. DELIVERABLES

Through the project I maintained a main project
webpage [18] as well as a engineering notebook where
I tracked my progress [19].

In March we submitted our trajectory optimization
work to IEEE/RSJ IROS (International Conference on
Intelligent Robots and Systems) and it was recently
accepted [5]. While we are continuing to develop our
graph search method, we are hoping to submit our
progress to IEEE ICRA (International Conference on
Robotics and Automation) in September. I have pro-
posed a larger scale version of the graph search as my
SCS (School of Computer Science) Honor Undergrad-
uate Senior Thesis.
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