Finding a Research Topic

A.J. Brush, Microsoft Research
Valerie Taylor, Texas A&M/CMD-IT

Sign-Up for CRA-Women Updates: www.cra-w.org

Twitter (@CRAWWomen)
2 minutes
Turn and talk to neighbor

What questions do you have about finding a research topic?
Key Takeaways

• The path to find a research topic will be a zigzag road
 • Don’t expect to find it in just one shot
 • Often your research topic changes along your career
 • So no need to feel that you will be stuck with your Ph.D. topic for the rest of your life
• Ok to span two fields
 • Many breakthroughs are made this way
Selecting a Topic

Moving from coursework to picking a topic is often a low point
 – Even for the most successful students

Why?
 – Going from what you know-coursework with answers, to something new-research that no one knows the answer and there can be many answers
Passing exams

Picking a Topic, Moving from coursework to research

First publication

Adapted from: Carla Ellis, Duke
The Thesis Equation

Topic + Advisor = Dissertation
Advisor vs. Research Areas

What if you like an advisor but not passionate about his/her subfield, or vice versa?

Opinion: Picking a good, matching advisor is more important!

- An adviser is for life
- He/she can teach/mentor you in many things, not just research
- You will be less stressed out
- You can expand to adjacent subfield, with his/her help
- You can get a co-advisor/committee to help with research
Selecting an Advisor

What should you consider when selecting an advisor?

Working style is very important

- Do some background reading about faculty research
- Talk with current graduate students to find out working style
- Talk with current graduate students about expectations
- Get to know your working style; be honest with yourself
Now the harder part: Find a research topic

The path to success consists of three simple elements. Find what interests you that you can do well, and is needed by the people.
Focusing from Area to Topic

Area = subfield
- architecture, theory, AI, high performance computing, or interdisciplinary
- Is it important, timely, jobs in the area?

Topic = specific open problems in subfield
- **Theory**: provably better algorithm
- **AI**: Improving a machine learning algorithm
- **Architecture**: reliability, approximate computing
- **HPC**: parallel algorithm, scheduling scheme
- **Systems**: Reliability, Big Data
- **Interdisciplinary**: deep learning, big data...
Find your own strength

What is easier for you?

- Writing and modifying a complex software and debugging it?
- Prove theorem?
- Analyzing data?

How to find it if you don’t know?

- Try various projects/classes
1 minute
Turn and talk to neighbor

What are your strengths?
Topic Scale and Scope

Scale
– Should be big enough to have more than one open problem, or solving one should lead to another

Scope
– Too narrow, e.g., just analysis no experiment, not leave enough room
– Too broad, open ended e.g., data mining, for what? why? too
More Things to Consider

What drives you? bores you?
 – Technology, puzzles, applications, interdisciplinary

Do you (i.e., your advisor) have funding for you to work in the area?
 – Working as a TA
 – Working as an RA
 – Having university/college, government, industry, etc... fellowship/scholarship/grant

Don’t chase hot topics unless you are truly interested
 – Hot topics can change by the time you graduate and are in the job market
More Detailed Considerations

Whose interests besides yours may also be important?

- Your advisor
- Your research community
 - E.g. architecture and OS fields’ interests may not be the same

Love your topic!

- Sets the course for your next 2-3 years
- Determines, in part, opportunities offered to you upon graduation
- May work in same/related area for years
Interdisciplinary Research Topic

These days, many top faculty candidates have interdisciplinary thesis topics

- Examples: AI + Systems, HCl + Software engineering, AI + Biology/Medicine, HCl + Psychology, database + architecture, HCl+ education.

Benefits

- May leverage your interest/strength in the other areas
- You can find jobs in other areas/departments
- You can easily find coadvisers and collaborators
- It might be easier to bring “fresh air” to an old area or problem
- There is so much to learn, so you won’t get bored
Your interests?

What make you excited?
Imagine yourself attend a talk about such topic
 – Do you fall asleep after 5min?
 – Or you will be awake for the whole talk, and keep discussing with your peers after the talk?

What if you are not interested in anything?
 – Have you attended enough talks and are exposed to enough fields/areas?

What if you are interested in everything?
 – Good! Consider the other factors
 – Pick 1---Ph.D is only the beginning of your career, and you still have 20-30 years to work on the others!
Turn and talk to neighbor

What topic(s) are you considering?
How are you investigating, comparing?
9 Ways to Identify a Good Research Problem
1) Find Social Needs

Creating an Exciting Application Scenario

“as a mathematical discipline travels far from its empirical source, or still more, if it is a second and third generation only indirectly inspired by the ideas coming from ‘reality’, it is beset with very grave dangers.

... that the stream, so far from its source, will separate into a multitude of insignificant branches, and that the discipline will become a disorganized mass of details and complexities.”

John Von Neumann, "The Mathematician", 1957

Exciting application scenarios will

• motivate you,
• expose the limitations of existing solutions,
• help you to focus your efforts.
2) Think Out of the Box

Great advancements in science and engineering often are the repudiation of generally accepted beliefs.

Anonymous

Most researches are constrained by models and generally accepted assumptions of the real world. But our knowledge of the nature is never perfect, and the underlining technologies are rapidly changing...

- Velocity of light is constant. ... embrace it as a law of physics and we have the theory of relativity.
- Clients request and server computes … Why not send some of the code to client instead? … and we have JAVA & mobile code.
- Is TCP appropriate for wireless communication?
- Is fairness a good metric for real time computing?
- Is load balance is always a good idea?
3) Flash of Brilliance

You wake up one day with a new insight/idea
New approach to solve an important open problem

Warnings:
This *rarely* happens if at all (please don’t rely on it)
Even if it does, you may not be able to find an advisor who agrees
4) The Apprentice

Your advisor has a list of topics
Suggests one (or more!) that you can work on
Can save you a lot of time/anxiety

Warnings:
Don’t work on something you find boring, fruitless, badly motivated
Several students may be working on the same/related problem
5) The Extended Course Project

You take a project course that gives you a new perspective
The project/paper combines your research project with the course project
 – One (and ½) project does double duty

Warnings:
 – You may need to check with your adviser first
 – May also be a distraction if the scope and scale are too small
6) Redo … Reinvent

You work on some projects
 – Re-implement or re-do; Evaluate
 – Identify an improvement, algorithm, proof

You have now discovered a topic

Warnings:
 – You may be without “a topic” for a long time
 – It may not be a topic worthy of a doctoral thesis
7) Analyze Data

You participate in more senior student’s evaluation study or spend 6 months collaborating with industry:
- Help with data collection and analysis
- Identify open challenges

You have now discovered a topic

Warnings:
- You will have to agree on who works on identified open challenges
- If collaborating with industry, make sure that they allow you publish!
8) The Stapler

You work on a number of small topics that turn into a series of conference papers
You figure out *somehow* how to tie it all together

Warning:
May be hard/impossible to find the tie
9) The Synthesis Model

You read papers from other subfields in computer science or a related field
Look for places to apply insight from another (sub)field to your own
 – E.g., machine learning to compiler optimizations

Warnings:
 – You can read a lot of papers and not find a connection
 – Please do NOT first start with the solution. Start with the problem, and then find what solution is the best! (don’t look for nails for your hammer)
Tips and Suggestions

• Topic + advisor are both important

• Follow your interests and passion
 – Key driver for success and impact
 • Are you eager to get to work, continue working?

• If not really interested, adapt
 – Tedium or actual lack of interest and motivation?
When you’re stuck at the start

Read/present papers regularly to find open research issues
Practice summarizing, synthesizing & comparing sets of papers
Write your own slides for presentations
Don’t 100% believe what a paper says

Work with a senior PhD student on their research

Get feedback and ideas from others: conferences, research internships, advisor’s idea

Sometimes you need to take a leap of faith!
– Be open to trial – and - error
When you’re **still** stuck…

Do internships in industry
- They have many problems but have no time to solve them

Attend PhD oral exams, thesis defenses, faculty candidate talks
- Understand how to formulate problems
- Understand what constitutes a problem solution

Assess your progress, with your advisor
- Set goals per semester
- Have you ruled out an area? converged on an area?
- Chosen a topic for an exploratory research project?
When you’re really really really stuck

Change research topics?
- May move you out of your advisor’s comfort zone of expertise
- Starting from “scratch” (e.g., need to learn the related work in a new area)

Change research advisor?
- May go through ‘shakedown’ period again
- May or may not be better off

Sometimes taking a few months break can relax you and freshen up your mind!
Identify a research topic and get started!