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I) Goals and Purpose

This CREU project arose from a collaboration which began at a Research Experiences for Under-
graduate Faculty (REUF) workshop in 2012. During the workshop topics suitable for undergraduate
research and student faculty collaboration were presented. One such topic included prime labelings
of graphs.

A graph labeling is an assignment of values to the vertices or edges of a graph subject to certain
constraints. Many different graph labeling problems exist - our work focuses on prime labelings. A
coprime labeling is a labeling of the vertices by distinct integers in such a way that the labels of any
two adjacent vertices are relatively prime. If a graph with n vertices has a coprime labeling by the
integers 1,2,3, . . . ,n then the labeling is said to be prime.

The CREU project completed used computing along with knowledge of graph theory to help deter-
mine which hypercube graphs, Qk, are prime.

II) Related Work

Interest in prime labeling problems first began in the early 1980s when Entringer and Tout first con-
jectured that all trees are prime [2]. Since then, much work has been done trying to determine which
classes of graphs are prime [1]. Despite the numerous publications in the area of prime labelings,
there are no publications specifically looking at prime labelings of hypercube graphs.

There is a long history of computing being used to help solve difficult problems in graph theory. For
example, the Traveling Salesman Problem has given rise to numerous heuristics and exact algorithms.
The area of graph theory is rich in problems that are easy to state and may even be easy to solve for
small cases, but which become extremely challenging for graphs on a large number of vertices. Prime
labeling problems fall into this category. For certain graphs, computing can be used to determine
whether a prime labeling exists. It can also be used along with mathematical knowledge to determine
whether a particular class of graphs is prime.



III) Process

There were three main components to this project. The first component involved students learning the
necessary background in the area of graph theory and more specifically learning about the structure
and characteristics of hypercube graphs.

The second component of the project involved creating an algorithm that searches for prime label-
ings of hypercube graphs. The hypercube, Qk, has 2k vertices and therefore an algorithm that tests
every possible labeling to find a prime labeling has efficiency order O(2k!). For this reason an ex-
haustive search for prime labelings is not efficient or practical. A more efficient algorithm needed to
be developed to check for prime labelings for larger values of k. We used their knowledge of C++
to implement algorithms that could potentially find a prime labeling. We first started by creating a
program that utilized a brute force search method in order to find a prime labeling for graphs up to
Q3. For larger values of k another approach was needed.

One algorithm that we came up with has worked for values of k through k = 8 and involves partitioning
the labels according to common divisors. The computer program creates sets for the labels 1, . . . ,2k

with the same prime divisors. The first step of the algorithm is to determine the possible adjacencies
by determining the hamming distance between each pair of vertices. Next, it finds the prime divisors
of each label and stores them. Once that is completed, the sets are created, which groups the labels
with the same prime divisors. Conflict sets are those that contain labels that are not relatively prime to
those within a set. Candidate sets are those that contain labels that are relatively prime to those within
a set. These conflict and candidate sets are stored as well. The program then tries to place a label
beginning with label 1. If a label works, it tries another label from that set’s candidate sets. If a label
does not work, the replacement label cannot come from that set or from that set’s conflicting sets.
Unfortunately, this program takes several weeks to complete for k = 8 so as the hypercube graphs
become larger, searching still remains an issue.

The third component of the project involved using knowledge gained from determining which graphs
are prime along with mathematical knowledge to attempt to prove theorems regarding the values of k
for which Qk is prime.

IV) Results and Discussion

During our research experience, we were able to determine whether a hypercube graph Qk is prime
for k = 1,2,3 . . .8. The computer algorithm concluded there are no prime labelings for the hypercube
graphs Q4 and Q6. We were able to verify prime labelings for the hypercube graphs Q2, Q3, Q5, Q7,
and Q8. The prime labelings pictured below were generated by the computer algorithm described
above. Our main results are given below.

Theorem 1. Q2 is prime.

The below graph shows an example of a possible prime labeling of the hypercube graph Q2.



Theorem 2. Q3 is prime.

The below graph shows an example of a possible prime labeling of the hypercube graph Q3.
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In order to prove there is no prime labeling for Qk the following lemma is needed.

lemma 1. Any two vertices in Qk have 0 or 2 common neighbors.

Proof. Let Qk be a hypercube graph with 2k = n vertices. By Lemma 1, Qk is bipartite. This implies
that Qk has a vertex set that can be partitioned into two nonempty sets A and B each of order n/2
such that each vertex has degree k. Let all the vertices of Qk be labeled with binary strings of length
k. Without loss of generality, let the vertices in partition A be labeled by binary strings with an even
number of ones. Then, the vertices in partition B have an odd number of ones in their binary string
labelings.

Case 1. Let x, y be two vertices in Qk with hamming distance 1. Then x, y are adjacent. Suppose x
and y have a common neighbor. Then, Qk would contain C3 as a subgraph. Cycles of odd length are
not permitted in bipartite graphs. Therefore, x and y have exactly 0 common neighbors.

Case 2. Let x, y be vertices with hamming distance 2. Notice that x and y are in the same partition of
the bipartite graph. Without loss of generality, let x and y be in partition A. The degree of x is k and
the degree of y is k, that is to say x and y each have k possible vertices to be adjacent to in partition
B. Let x be labeled with the binary string v1 v2 . . . vi . . . v j . . . vk−1 vk and let y be labeled with the
binary string v1 v2 . . . wi . . . w j . . . vk−1 vk, where i and j are integers between 1 and k and each bit in
the sequences for x and y are either 0 or 1. Since x and y have hamming distance 2, x and y differ
in the ith and jth positions. The only common neighbors of x and y are v1 v2 . . . vi . . . w j . . . vk−1 vk
and v1 v2 . . . wi . . . v j . . . vk−1 vk which are produced by changing bit i or j. Therefore, if the hamming
distance of two vertices in Qk is 2, then there are exactly 2 common neighbors.



Case 3. Let x, y be vertices with hamming distance greater than 2, that is to say the hamming distance
is greater than or equal to 3. Then, x and y differ in at least three bits. There is no vertex that differs in
exactly one bit to x that also differs in one bit to y. Therefore, if the hamming distance of two vertices
in Qk is greater than 2, then they have exactly 0 common neighbors.

Therefore, any two vertices in Qk have 0 or 2 common neighbors.

The following proof that Q4 is not prime utilizes the bipartite structure of hypercube graphs combined
with the common neighbor lemma to reach a contradiction when placing the labels, specifically the
labels that are multiples of three. This contradiction is a result of the large number of multiples of
three that need to be placed.

Theorem 3. Q4 is not prime.

Proof. Let Q4 be a hypercube graph with 24 = 16 vertices. A prime labeling of Q4 is a labeling of the
vertices by 1 through 16 such that the labels of two adjacent vertices are relatively prime. Suppose
there exists a prime labeling of the vertices by the numbers 1 through 16. Notice that 6 and 12 can
only be adjacent to the vertices labeled 1,5,7,11, and 13. By Lemma 2, two vertices either have 0
or 2 common neighbors. If 6 and 12 have two common neighbors, then the vertices labeled 6 and 12
have six distinct vertices that are either adjacent to the vertex with label 6 or the vertex with label 12.
If 6 and 12 have zero common neighbors, vertices labeled 6 and 12 have eight distinct vertices that
are either adjacent to the vertex with label 6 or the vertex with label 12. There are not enough possible
labels for the vertices adjacent to labels 6 and 12. Therefore, Q4 is not prime.

Theorem 4. Q5 is prime.

The graph below gives a prime labeling of the hypercube graph Q5.
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In order to prove that Q6 is not prime a few preliminary results are necessary. First recall that in a
hypercube graph Qk where the vertices are assigned unique binary sequences of length k, two vertices
are adjacent if and only if their binary sequences differ by exactly one bit. Therefore, none of the
vertices whose binary sequences contain an even (similarly, odd) number of 1s will be adjacent. In a
prime labeling, none of the even labels can be adjacent. As a result, we are choosing to label vertices
corresponding to binary sequences with an even (similarly, odd) number of 1s with even (odd) labels.

lemma 2. In a hypercube Qn, if vertices v1 and v2 each have exactly k 1s and differ by exactly two
bits, then both v1 and v2 are adjacent to two and only two vertices u1 and u2, where exactly one of the
vertices u1 or u2 has k−1 1s and the other has k+1 1s for 1≤ k ≤ n−1.

Proof. Let v1 = a1, a2, . . . ,ai . . . ,a j, . . . ,an−1, an and v2 = a1, a2, . . . , āi, . . . , ā j, . . . ,an−1, an, where
1≤ i≤ n,1≤ j ≤ n, i 6= j, the a terms represent a binary value of 0 or 1, and the bar signifies one bit
change from 0 to 1 or vice versa. Two vertices are adjacent if and only if their binary sequences differ
by exactly one bit, therefore u1 = a1, a2, . . . , āi, . . . ,a j, . . . ,an−1, an and u2 = a1, a2, ai, . . . , ā j, . . . ,an−1, an.
Then, there are two possible cases for the possible number of 1s that u1 and u2 can contain, which are
evident in the table below.

ai a j ai a j # 1s in u1 # 1s in u2
0 1 1 0 k+1 k-1
1 0 0 1 k-1 k+1

Therefore, either u1 or u2 has k−1 1s and the other u term has k+1 1s.

lemma 3. In Q6, any set of 10 vertices in one bipartite set must be adjacent to at least 22 vertices in
the other bipartite set.

Proof. Let the 64 vertices be partitioned into two bipartite sets called U and V , each containing 32
vertices. Let U be the set of vertices whose binary sequences contain an odd number of 1s and let V
be the vertices in Q6 whose binary sequences contain an even number of 1s. Let U ′ and V ′ be subsets
of U and V , respectively. Without loss of generality, consider the vertex labeled 000000 ∈ V and
add it to V ′. 000000 must be adjacent to the six vertices in U that have exactly one 1 in their binary
sequences. Add those six vertices in U to U ′. Those six vertices that were just added to U ′ must
then be adjacent to the vertices in V that contain exactly two 1s in their binary sequences. Since each
of the binary sequences in Q6 consists of six digits from which to choose two 1s, there are

(6
2

)
= 15

vertices whose sequences have exactly two 1s. Add these fifteen vertices to the set V ′. Those same six
vertices in U ′ are also adjacent to 000000 because they have exactly one 1 in their binary sequences.
Therefore, there are six vertices in set U ′ that are adjacent to the sixteen vertices in V ′. Let four more
vertices be added to the six vertices in U ′ while trying to find the fewest number of vertices that these
four can be adjacent to in V ′. There are two cases to consider.

Case 1. Consider the case where any of the four vertices in U ′ have five 1s in its binary sequence. Let
the vertex with five 1s in its binary sequence be called w. Then, all of w’s six neighbors must be added
to V ′, which adds 6 vertices to the 16 that are already in V ′. Consequently, there are 22 neighbors in
V ′ with three remaining vertices in U ′ that haven’t even been considered yet.

Case 2. Consider the case where all four vertices have exactly three 1s in their binary sequences.
Then, each of these four vertices has exactly three neighbors with two 1s in their binary sequences,



which are already included in the sixteen vertices in V ′. These four vertices also have three neighbors
with exactly four 1s in their binary sequences. By Lemma 3, any two of the four vertices can have
exactly one neighbor in common that has four 1s in its binary sequence. Therefore, at least

(4
2

)
= 6

vertices must be added to V ′. It follows that each of these four vertices are paired with each of the
remaining three vertices, which establishes the required three neighbors for each vertex with exactly
four 1s in the binary sequence.

U ′ now has 10 vertices in total, which includes the six with exactly one 1 in their binary sequences
and the four with three 1s in their binary sequences. These 10 vertices are adjacent to 22 vertices in
V ′, which includes the vertex 000000, the fifteen with exactly two 1s in their binary sequences, and
the six with four 1s in their binary sequences. This represents the fewest number of adjacencies that
can occur in Q6.

Considering these two cases, the following proof outlines the contradiction that shows why Q6 is not
prime.

Theorem 5. Q6 is not prime.

Proof. Suppose there exists a prime labeling of the vertices of Q6 by 1 through 64. Let all of the
odd numbers label the vertices in U and all of the even numbers label the vertices in V . Then, there
are 10 even multiples of three and 11 odd multiples of three that must be placed into their respective
bipartite sets such that none of them are adjacent. By Lemma 4, the 10 even multiples of three will be
adjacent to at least 22 odd-labeled vertices. Since there are 32 vertices in each bipartite set, this leaves
10 vertices with which to label 11 odd multiples of three, which is clearly impossible. Therefore, Q6
is not prime.

Theorem 6. Q7 is prime.

A prime labeling of the hypercube graph Q7 can be found in the appendix.

Theorem 7. Q8 is prime.

A prime labeling of the hypercube graph Q8 can be found in the appendix.

V) Future Work

Over the past two semesters our CREU group has been able to determine whether or not Qk is prime
for 1≤ k ≤ 8. To the best of our knowledge results for k > 3 are unpublished and worth noting. Our
immediate plans include writing up our results and submitting them for publication. Currently we
are planning to submit our manuscript to a peer reviewed journal which publishes papers on graph
labeling problems.

Although we were able to establish whether or not a prime labeling exists for Qk for k up to 8, we
were unable to determine any general results for when Qk is prime. Based on our work it seems this
may be a difficult problem that is related to some well-known and open problems in number theory.
Therefore, a general result providing conditions for when Qk is prime for any k may be unlikely.
However, despite these challenges the mentors are optimistic that it is possible to determine whether



or not Qk is prime for larger values of k and that it may also be possible to prove results that give
certain conditions necessary for a prime labeling to exist.

VI) Web Links

The link for our project website is:
http://library.providence.edu/dps/creu/plhg/

VII) Presentations and Publications

• Joint Mathematics Meetings Student Poster Session, Atlanta, GA, January 6, 2017.

– JMM is the largest annual mathematics meeting in the world. During the undergraduate
poster session over 300 student posters were presented and judged by mathematicians.

• Annual Celebration of Student Scholarship Creativity, Providence College, Providence, RI,
April 26, 2017.

– This event showcases the scholarly, creative, and service work that Providence College
students are doing. The Celebration features students from all class years and from many
different departments and disciplines.

• Math and Computer Science Student Talks, Providence College, Providence, RI, May 8, 2017.

– The CREU research group along with two other students will give a talk at Providence
College discussing their work over the past two semesters.



1 Prime Labeling For Q7

Vertex Label
1001000 96
1001001 53
1001010 83
1001011 76
1001100 107
1001101 92
1001110 38
1001111 39
1000000 67
1000001 108
1000010 102
1000011 71
1000100 114
1000101 73
1000110 113
1000111 62
1011000 89
1011001 2
1011010 124
1011011 45
1011100 104
1011101 57
1011110 51
1011111 58
1010000 120
1010001 101
1010010 97
1010011 116
1010100 103
1010101 100
1010110 80
1010111 63
0001000 35
0001001 12
0001010 6
0001011 25
0001100 18
0001101 5
0001110 13
0001111 14

Vertex Label
0000000 24
0000001 85
0000010 7
0000011 36
0000100 11
0000101 42
0000110 30
0000111 17
0011000 48
0011001 55
0011010 65
0011011 28
0011100 19
0011101 56
0011110 46
0011111 3
0010000 49
0010001 26
0010010 54
0010011 23
0010100 60
0010101 121
0010110 77
0010111 10
0101000 66
0101001 115
0101010 95
0101011 22
0101100 125
0101101 52
0101110 44
0101111 9
0100000 29
0100001 84
0100010 72
0100011 37
0100100 78
0100101 41
0100110 47

Vertex Label
0100111 20
0111000 31
0111001 98
0111010 34
0111011 15
0111100 88
0111101 27
0111110 21
0111111 68
0110000 90
0110001 59
0110010 61
0110011 112
0110100 119
0110101 50
0110110 40
0110111 33
1101000 43
1101001 4
1101010 64
1101011 69
1101100 82
1101101 81
1101110 75
1101111 8
1100000 126
1100001 79
1100010 109
1100011 70
1100100 1
1100101 110
1100110 118
1100111 87
1111000 16
1111001 93
1111010 99
1111011 74
1111100 111
1111101 86

Vertex Label
1111110 106
1111111 105
1110000 127
1110001 94
1110010 32
1110011 117
1110100 122
1110101 91
1110110 123
1110111 128



2 Prime Labeling For Q8

Vertex Label
0 3
1 182
2 238
3 9
4 22
5 27
6 81
7 44
8 88
9 243
10 15
11 176
12 45
13 26
14 242
15 75
16 52
17 135
18 225
19 104
20 21
21 38
22 34
23 63
24 147
25 208
26 68
27 189
28 136
29 35
30 175
31 76
32 70
33 33
34 99
35 140
36 39
37 170
38 190
39 117

Vertex Label
40 51
41 130
42 14
43 153
44 154
45 19
46 221
47 28
48 57
49 46
50 56
51 171
52 110
53 91
54 13
55 220
56 230
57 77
58 143
59 10
60 247
61 6
62 12
63 169
64 62
65 69
66 207
67 20
68 87
69 152
70 82
71 93
72 105
73 58
74 116
75 111
76 124
77 55
78 65

Vertex Label
79 98
80 123
81 232
82 248
83 129
84 92
85 187
86 209
87 40
88 74
89 119
90 133
91 50
92 245
93 18
94 24
95 253
96 141
97 80
98 100
99 159

100 164
101 161
102 203
103 160
104 148
105 217
106 11
107 200
108 85
109 36
110 48
111 121
112 184
113 7
114 17
115 250
116 49
117 54

Vertex Label
118 72
119 23
120 29
121 96
122 108
123 31
124 144
125 95
126 115
127 162
128 86
129 165
130 177
131 172
132 183
133 94
134 188
135 195
136 201
137 106
138 212
139 213
140 118
141 37
142 41
143 112
144 219
145 122
146 244
147 231
148 236
149 43
150 53
151 134
152 142
153 47
154 59
155 146
156 61



Vertex Label
157 192
158 216
159 145
160 237
161 178
162 194
163 249
164 166
165 67
166 71
167 196
168 202
169 73
170 79
171 224
172 89
173 30
174 60
175 83
176 206
177 97
178 101
179 158
180 107
181 90
182 120
183 103
184 109
185 150
186 180
187 113
188 240
189 127
190 1
191 42
192 255
193 214
194 218
195 131
196 226
197 155

Vertex Label
198 185
199 254
200 2
201 205
202 215
203 4
204 235
205 84
206 126
207 5
208 8
209 25
210 137
211 16
212 139
213 168
214 252
215 149
216 151
217 66
218 132
219 157
220 198
221 125
222 163
223 78
224 32
225 167
226 173
227 64
228 179
229 156
230 234
231 181
232 191
233 102
234 204
235 193
236 114
237 197
238 199

Vertex Label
239 228
240 211
241 138
242 174
243 223
244 186
245 227
246 229
247 210
248 222
249 233
250 239
251 246
252 241
253 128
254 256
255 251
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