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I) Goals and Purpose 
While metagnomics has facilitated the sequencing of viral communities inhabiting 
niches from across the globe, each study uncovering sequences with no recognizable 
homology to known proteins or genomes. Viral data repositories do not include 
sufficient representation of the diversity of viruses on Earth. Nevertheless, novel 
viral species genomes – particularly those in high abundance – have been able to be 
mined directly from complex community viral metagenomes. Discovery of such viral 
genomes often relies heavily on manual curation and prior studies have employed a 
variety of different criteria when sifting through sequencing data. In an effort to 
provide a comprehensive means of mining for complete viral genomes from 
complex sequence data sets, we developed the tool virMine. This tool provides an 
automated solution while maintaining flexibility, allowing researchers to select from 
a variety of filters. 

 
 
II) Related Work 

The most abundant organisms on Earth are viruses, of which one of the most 
notable are bacteriophages, or viruses that infect bacteria (Breitbart & Rohwer 
2005). Bacteriophages (phages) play a critical role in the environment, structuring 
bacterial communities (Clokie et al. 2011; Jacquet et al. 2010) and mediating host 
mortality on a global scale (Berdjeb et al. 2011). As such, viral metagenomic studies 
have been conducted for numerous habitats on Earth (e.g. marine waters (Breitbart 
et al. 2002; Yooseph et al. 2007; Hurwitz & Sullivan 2013; Brum et al. 2015), soil 
(Williamson et al. 2007; Fierer et al. 2007; Zablocki et al. 2014), and freshwaters 
(López-Bueno et al. 2009, 2015; Roux et al. 2012)). In addition to their 
environmental importance, phages are vital components of the human microbiome 
(Virgin 2014). Studies of the phage communities within the gastrointestinal tract 
(Reyes et al. 2010; Minot et al. 2011, 2013; Norman et al. 2015; Manrique et al. 
2016) have discovered novel ubiquitous phage species (Dutilh et al. 2014), a ‘core’ 
phage population amongst healthy individuals, and a correlation between 
disturbance of this core community and disease (Manrique et al. 2016). Regardless 
of the environment explored, the overwhelming majority of viral sequences 
produced – be it eukaryotic viruses or phages –exhibit no sequence homology to 
characterized viral species. 
 
In stark contrast to eukaryotic and prokaryotic organisms, only a small fraction of 
viral – in particular phage – genomes have been sequenced and characterized. While 
metagenomics has been fruitful in unearthing gene markers and genomes of 
uncultivated eukaryotic and prokaryotic species (Hug et al. 2016), surveys of  
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viromes face unique challenges (Bruder et al. 2016; Rose et al. 2016). First, unlike 
cellular organisms, there is no universally conserved gene in viruses. Viruses span a 
high degree of genetic diversity and are inherently mosaic (Hatfull 2008). Second, 
even when sequencing purified virions, sequencing data often includes non-viral 
(often host) DNA. This is further complicated by the fact that viral genomic DNA is 
often orders of magnitude less abundant than host cells or other organisms in the 
sample. Thus, tools have been developed to aid in distinguishing viral from non-viral 
sequences (Roux et al. 2015; Hatzopoulos et al. 2016; Yamashita et al. 2016). Third, 
extant viral data repositories do not include sufficient representation of viral 
species. Thus, bioinformatic tools for the interrogation of complex, bacterial 
communities have limited application in virome analyses. 
 
The identification of viral genome sequences from relatively simple samples, i.e. 
samples containing a single or few viral species, is relatively straight-forward even 
in the presence of a large background of non-viral sequences. An example of such an 
inquiry would be the search for potential viral pathogens from clinical samples. 
Tools such as VIP (Li et al. 2016), VirAmp (Wan et al. 2015), and VirFind (Ho and 
Tzanetakis 2014) were designed specifically for such cases; they are, however, 
limited to the isolation of known viral taxa. Complex communities, particularly 
environmental samples present significantly greater challenges. While tools such as 
MetaVir (Roux et al. 2014) and VIROME (Wommack et al. 2012) have been 
developed to process (via homology to existing viral sequence databases) large and 
complex, virome data sets, they do not easily facilitate the isolation of genome 
sequences. To do this, alternative approaches have been employed. Typically, one of 
two approaches is taken. The first approach is founded on binning contigs from 
metagenomic datasets based upon their nucleotide usage profiles and/or contig 
coverage (see reviews Sharon and Banfield 2013; Garza and Dutilh 2015; Sangwan 
et al. 2016). The second, more frequently pursued method relies largely on manual 
curation. Several complete phage genomes have been mined from metagenomic 
data through inspection of sequences based upon their: size (Inskeep et al. 2013; 
Bellas et al. 2015; Ghai et al. 2016; Skvortsov et al. 2016), coverage (Dutilh et al. 
2014; Bellas et al. 2015; Skvortsov et al. 2016); circularity (Dutilh et al. 2014; Bellas 
et al. 2015; Ghai et al. 2016), presence of sequence homology to annotated viral 
genes or genes of interest (e.g., terminases, structural proteins, portal proteins) 
(Sharon et al. 2011; Inskeep et al. 2013; Labonté & Suttle 2013a,b; Mizuno et al. 
2013a,b; Nielsen et al. 2014; Bellas et al. 2015; Ghai et al. 2016; Paez-Espino et al. 
2016; Skvortsov et al. 2016; Voorhies et al. 2016), and/or homology to CRISPR 
spacer sequences (Andersson & Banfield 2008; Inskeep et al. 2013). Similar 
searches have discovered novel eukaryotic viruses as well (e.g. Mokili et al. 2013; 
Schürch et al. 2014; Rosario et al. 2015; Liu et al. 2016). As highlighted in the recent 
report of the International Committee on Taxonomy of Viruses (ICTV) Executive 
Committee, genomes identified from metagenomic data will vastly expand our 
catalog of viral diversity (Simmonds et al. 2017). 
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Despite the bounty of sequence data ripe for mining, bioinformatics tools are 
presently a rate limiting step in analyses. For instance, assemblers vary in their 
efficiency in assembling viral genomes (Rihtman et al. 2016). Likewise analyses 
strategies can introduce unintentional effects (Smits et al. 2014, 2015). 

 
III) Process 

Herein we present the first software tool – virMine – for the automated analyses of 
viral metagenomic sequences for the discovery of viral genomes. This pipeline was 
specifically designed to accommodate the anticipated mosaicism and novelty 
present within viral communities in nature. 
 
The pipeline integrates existing tools and new algorithms. Tools incorporated 
include Sickle (https://github.com/najoshi/sickle) for raw read quality control, 
SPAdes (Bankevich et al. 2012), metaSPAdes (Bankevich et al. 2012), and MEGAHIT 
(Li et al. 2015) for sequence assembly, GLIMMER (Delcher et al. 1999) for coding 
region prediction, and the BLAST+ suite 
(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). GLIMMER scripts 
have been modified to predict viral coding regions by increasing the threshold for 
gene overlaps and decreasing the threshold for the minimum gene length to 150 and 
99 nucleotides respectively. These parameters are used for generating a training 
set; final predictions are made with a reduced overlap of 90 nucleotides. These 
parameter values were selected after testing GLIMMER’s predictions for annotated 
phage genomes of various sizes (between 3Kbp and 300Kbp). Users can select to 
filter their assembly by a variety of parameters, including coverage which is 
evaluated using the BBTools package BBMap 
(https://sourceforge.net/projects/bbmap/) and the pileup function within 
SAMtools (Li et al. 2009). In addition to standard Python modules, the BioPython 
(Cock et al. 2009) library is also required. The pipeline classifies contigs, 
distinguishing non-viral, viral, and putative viral sequences. Development and 
testing was conducted on Ubuntu and MacOSX systems. 
 
The pipeline includes two databases for distinguishing between non-viral and viral 
sequences. The first database includes amino acid sequences from non-viral 
sequences, collected from NCBI’s RefSeq collection 
(ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/). The second database 
includes sequences from the manually curated prokaryotic virus orthologous 
groups (Grazziotin et al. 2017) available at 
ftp://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/home.html, and annotated 
RefSeq eukaryotic virus coding sequences, manually curated from 
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/. 

 
IV) Results and Discussion 

Figure 1 outlines the process employed by the virMine pipeline. A key aspect of the 
tool is its flexibility; it was designed to be modular, allowing users to access 

https://github.com/najoshi/sickle
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://sourceforge.net/projects/bbmap/
ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/
ftp://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/home.html
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses/
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functionality 
individually or execute the full pipeline. Furthermore, to facilitate targeted analyses, 
filtration options and customization is available. 
 

 
Fig. 1. Overview of virMine pipeline.  
 
In the first step, raw sequencing data is evaluated using the QC tool Sickle. Reads are 
trimmed generating high quality data for assembly. Presently, the pipeline includes 
assembly by one of three methods: SPAdes, metaSPAdes, and MEGAHIT. These 
assemblers were selected as they represent a spectrum of rigor and expediency, 
including tools better equipped for assembly of low complexity samples (SPAdes) 
and those developed for complex metagenomes (metaSPAdes and MEGAHIT). In a 
prior study comparing tools for assembly of phage genomes from single or low 
complexity samples, the SPAdes assembler outperformed Velvet (Zerbino & Birney 
2008) and Ray (Boisvert et al. 2010) and as such was selected for our pipeline. 
Because the assembly process is the most memory intensive step, the pipeline has 
been developed so that this first step can be executed independently of the 
remainder of the pipeline, which has modest resource needs. Thus Step 1 can be 
performed on a multi-core and/or large RAM system and exported to personal 
machines for execution of the remaining steps. 
 
Step 2 is optional and permits the user to filter the contigs in the assembly based 
upon user-defined parameters. This can include some of the methods employed by 
previous studies mining for viral genomes, e.g. size, coverage, presence of genes or 
sequences (such as CRISPR spacer sequences) of interest. Users can specify a 
minimum and/or maximum contig length. Users can also specify a minimum 
coverage. In the case where a single viral isolate was sequenced, this option can 
easily distinguish between viral and non-viral (host and/or contaminant) 
sequences. Coverage is calculated by remapping the original reads to the contigs and 
the per contig coverage is calculated via BBMap. Coverage is not reported if this 
option is not selected. Alternatively, when SPAdes or metaSPAdes is used for 
assembly, users can select to use the SPAdes ‘cov’ value as a filter. Users can also 
filter contigs based upon sequences of interest by supplying these sequences of 
interest in a FASTA format file. Contigs are then BLASTed against this dataset. 
Results with a bitscore > 50 are considered ‘real’ hits and only contigs containing 
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these hits 
will be considered further. It is worth noting that any of these filters can be selected 
by the user. Furthermore, the user can specify the order in which they are applied. 
 
In Step 3, coding regions are predicted for each contig. Open reading frame (ORF) 
prediction is conducted using the tool GLIMMER (Delcher et al. 1999). Coding 
regions are predicted using GLIMMER trained to accommodate characteristics of 
viral genes, e.g. overlapping genes, short coding regions. (See the Methods for 
further details about parameters used for GLIMMER predictions.) The majority of 
viral genomes contain overlapping genes, a trend thought to have evolved to 
maximize protein production given physical constraints (Chirico et al. 2010). By 
relaxing the default values for the overlap and minimum gene length permitted 
during the GLIMMER search for coding regions, overlapping genes and small genes 
can be identified. It is important to note that this may, however, lead to an 
overestimation of ORFs within a genome as larger genes may be reported as 
multiple small or overlapping regions. This overestimation benefits downstream 
analyses. 
 
In the final step, each predicted ORF is compared to two databases – a collection of 
non-viral sequences and known viral sequences. These two databases can be 
manually curated data collections, such as the ones supplied with the download, or 
can be user defined. Comparisons are facilitated via blastx. All hits are reported 
from both databases and the bitscores are compared to assess the likelihood that 
the ORF is viral. Here, the overestimation from Step 3 may assist in distinguishing 
between viral and non-viral origins as larger genes that are partitioned (e.g. a gene 
partitioned by the domains within its protein) can increase scores for viral 
components from, e.g., highly conserved protein domains. All ORFs predicted for a 
single contig are aggregated, producing a quantifiable score for each contig. Contigs 
predicted to be viral are written to file, as are their ORF predictions and blastx 
results. Contigs containing ORFs with no recognizable sequence homology to the 
viral database or non-viral database are also written to file, as these sequences may 
represent truly novel species. 

 
V) Future Work 

We have benchmarked our tool using synthetic datasets and will be presenting this 
work at the GLBio Conference May 15. We are in the process of testing this tool on 
real datasets and will be doing this during the summer. I submitted an abstract to 
the 2017 ISMB meeting (Prague, Czech Republic) and am waiting to hear if it’s been 
accepted. 
 

VI) Web Links 
http://asquaredlab.weebly.com/  

 
VII) Presentations and Publications 

Garretto A, Putonti C. Identifying Viral Genomes within Complex Communities. 2017 
Great Lakes Bioinformatics Conference (Chicago, IL): May 15-17. Poster  

http://asquaredlab.weebly.com/
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