‘A CRA-W o coalition

‘: diversify computing

Computing Research Association

Y
CREU 2016-2017 Final Report: Analyzing the Potential of Learning Reading and

Math SKills Through Computational Thinking
Amber Wagner, Birmingham-Southern College (Formerly Kennesaw State University)
Melissa Driver, Kennesaw State University
Deja Jackson, Kennesaw State University
Erica Pantoja, Kennesaw State University
Cindi Simmons, Kennesaw State University
Kate Zelaya, Kennesaw State University

[) Goals and Purpose
Hopper’s Fables is intended to help first grade students (ages 6-7) reinforce their
math and reading skills while simultaneously developing their computational
thinking skills. In particular, we hope to assist students with learning disabilities,
but what we have learned is that if the tool is beneficial to those with learning
disabilities, it will be beneficial to all students.

Our research goals address three main questions:

1. Question: What are the existing block programming languages, and how do they
meet or not meet the pedagogical needs of students with learning disabilities?

2. Question: Can a programming language be created that can address the learning
of reading and math in addition to computational thinking?

3. Question: Does the resulting programming language meet the goals set forth in
the project description (i.e., Does it help students with reading and math skills?
Does it change the students’ attitudes towards or perceptions of CS?).

According to our investigation, there is no doubt that existing block programming
languages are playing an important role in education by enhancing the learning
process of students. However, most strong programming languages such as Scratch,
Frozen, and App Inventor are mainly developed and used to help students gain
programming skills. Because of the limitations of these languages in education, we
are excited to develop a language that will address not only computational thinking
but also math and reading skills. And, we are proud of our most important goal,
which is to design specifically to meet the math and literacy needs of students with
learning disabilities.

I[I) Related Work
Although there exists a movement to increase the accessibility of computer science
(CS) classrooms for all students (Burgstahler, 2011), there are few resources to
teach young students with learning disabilities about computational thinking and
even fewer evaluations of those resources (Falcdo, 2010). Teachers specializing in
learning disabilities often have to adapt existing CS curriculum to meet their
students’ needs. Although AccessComputing (2016), DO-IT (2016), and
AccessCS10K (2016) are making great strides towards increasing the accessibility of
the CS classroom, there is still much work to be done. The focus of this project is to
utilize an open source block programming language API (e.g., Blockly, Scratch) to

‘A CRA-W o coalition

‘: diversify computing

Computing Research Association

Y

create a block programming language that would help elementary-aged students
learn or reinforce reading and math skills while learning how to think
computationally. Pasternak (2016) found that CS is a viable class for all students
when conducting research with grades 6-10, and Apone et al. (2015) unites several
universities with Code.org to assist in bringing CS to K-5. Therefore, we believe
targeting elementary-aged students for this project is plausible. However, Pasternak
(2016) also found that it was difficult to teach programming within a specific
context. While the student researchers will be creating a programming language, the
focus when working with the target audience is not to teach them how to program
but to teach them how to think like a computer scientist (Wing, 2006). We also hope
that the work conducted within this project will expand upon that of Pasternak
(2016) indicating that it is possible to teach computational thinking through other
contexts.

Scratch Jr is the inspiration for this project, but Scratch Jr is primarily used for
students ages 5-7 (Scratch Jr, 2016). Similar to many existing block programming
languages, we aim to build a language with a “low floor” and “high ceiling” (Papert,
1980). While we hope students ages 5-7 will use the resulting programming
language, we intend to have a “higher ceiling” than Scratch Jr; thereby, allowing the
language to be more appealing to older students who may need reading or math
help. The language should contain simple, straightforward blocks related to reading
and math skill building. Additionally, the language’s environment should contain a
graphical interface for output that allows the users to see the results of their
programming in an exciting fashion similar to other block programming languages
(e.g., Scratch, Scratch Jr, Alice).

There exists a variety of block programming languages each having their own
particular focus. A few languages have resources that assist young student learners
with learning disabilities (Falcao, 2010). Hopper’s Fables is designed to have a focus
specifically for students with learning disabilities, which does not require teachers
to adapt their teaching environment specifically for these students. This language is
similar to others in the idea that it does not focus on teaching students how to
program, but rather think computationally. Hopper’s Fables differs in that not only
is it focusing on computational thinking, but also increasing the understanding of
some Common Core requirements such as reading and math for the 6-7 year old age
group (first grade).

Scratch Jr, Scratch, and Minecraft Hour of Code are just a few languages with similar
computational focuses as Hopper’s Fables. We evaluated these languages with our
grading rubric along with MIT App Inventor, Alice, Snap!, Code.org’s Frozen, and
Code.org’s Moana to determine how they stand in terms of what our research
deemed a valuable and successful block language for students. Our rubric

highlighted some grading elements such as “Creativity”, “Extrinsic Rewards”, “Clear
Goal and Purpose” and “Visuality of System Status”.

CRA-W g the coalition
Computing Research Association to diversi fy compu tin g

Women

The rubric was based on several attributes research indicated were important.
These attributes and associated articles are described below.

Learning by mistakes

The language should always keep users informed about what is going on, through
appropriate feedback within reasonable time (Masip et al., 2011), but feedback is
not that efficient if the language does not allow users to correct mistakes easily. In
some languages, such as Frozen and Scratch, visual feedback is available all the time
and the recover option “go back” is represented visually and symbolically. However,
other programming languages do not have this feature; they provide feedback using
code language, which is irrelevant information for students when they are not
familiar with code language. Error messages should be carefully designed and
prevent a problem from occurring. Either eliminate error-prone conditions or check
for them and present users with a confirmation option before users commit to the

action. Code errors make it difficult for students to recover from mistakes (Masip et
al,, 2011).

Feedback and designer/ learner models

Feedback is an extremely important feature in block programming languages as this
allows students to explore and understand the goal of the program and the scripts.
For instance, in Scratch, visual feedback is immediately provided to help the user to
understand when scripts are triggered and how long they run. If a script encounters
an error (e.g., dividing by zero), the border turns red and the block that caused the
error is highlighted in red as the figure below shows.

move B0/) steps

move steps

Figure 1. Error in Scratch.

Good block programming languages provide constant visible feedback for user
actions (Roque, 2007). A block programming language with strong feedback is
Frozen. In Frozen, the user is given feedback all the time. It provides a visible and
creative area for hints and feedback available all the time. Also, it provides visible
feedback with sound. For instance, if the user is missing a block it displays a
message saying that there may be a missing block. There is a sound for every block
used that helps the user to identify what the block does and figure out the missing
one. On the other hand, languages weak in feedback can be confusing (Roque, 2007).
For example, Snap! Does not provide feedback at all. If the user

‘A CRA-W o coalition

‘: diversify computing

Computing Research Association

Y

drags a wrong block (i.e., a block that does not fit) it does not provide any feedback.
The user must figure out by the name of the blocks, which block to use.

Interaction Flow, Symbolic Representations and Terminology

A simple and easy way to navigate block programming language is with visual
representations appropriate for the assigned tasks to guarantee the language
accomplishes its purpose. A nice framework enhances the capability of the language
to allow the user to reach all of the features (Chang, 2012). For instance, Scratch is
considered to have one of the best symbolic representations and terminology
among other programming languages (Suleyman et al, 2011). In Scratch, all
programming statements are well represented by text and symbols.

User Controls

User controls are very important attributes to the overall experience for the user.
User controls can be described as aesthetic appeal, usability of the functions, and a
clearly illustrated purpose of the game. It is important that the user has an easy
experience when reading the text to correctly navigate through it. Attributes that
would assist in increasing the aesthetic appeal of the text include highlighting key
terms and dividing text into clear and concise paragraphs. Additionally, there should
be easy navigation through the software, and images and videos should be of high
quality to develop “aesthetic feeling in users ” (Allen & Tanner, 2006). Click, drag,
and drop attributes should also be consistent and understandable. In the document,
the author states that, “education software should be stable and provide the users
with a high-level technical, technological and user comfort” [1]. This is useful
because if the software is difficult to maneuver through, then the goal of educating
will not reach its fullest potential. In addition, user control is ranked to be one of the
most important attributes that software should demonstrate.

Symmetry Between System and Real-World

Matching between the system and the real-world is making the game easily
connected to the real world as well as being age appropriate. This can be described
as real world situations or problems in the program can be logically be translated
into the real-world. Allen and Tanner (2006) state that “software content provides
the themes for educational projects, problem tasks and real-life examples.” For
example, the vocabulary words first grade students understand can be acted out.
This is very important because the game will not only appeal to the grade level of
the users but also assist them in furthering their understanding by providing an
enjoyable resource expanding upon classroom material. According to Allen and
Tanner (2006), “texts [should be] stylistically and professionally adjusted to the age
of users in the target group and develop their communication skills.” This again
reiterates the need for the terminology and other attributes to align with what the
students are actually learning in the classroom. The rubric focuses on the
vocabulary and its appropriateness to the intended users, the use of real-life
examples, and the use of problem-solving situations that would need to be evaluated

‘A CRA-W o coalition

‘: diversify computing

Computing Research Association

Y

in order to determine the amount of connectedness to the real-world a particular
software exhibits.

Visible Progress

It is also an important attribute for the user to be able to visually witness their
progress and level completion status reference; therefore, progress status should be
visually appealing and easily noticeable. For example, a bar filled to a certain
amount in order to express progress. In addition, the visual representation should
be automatically updated once progress or regression has been made. This is very
important because it provides immediate feedback to the user and gives them the
ability to be constantly updated on their success throughout the game.

Attractive Text/Graphics/Video Sound, Navigation

Diemand-Yauman et al. (2011) found a correlation between the effort it took to read
text and the ability of users to remember that information for later testing.
Surprisingly, information presented in a "harder-to-read" font, (i.e., Comic Sans) was
better remembered than the same information in “easier-to-read” type (Diemand-
Yauman et al.,, 2011). One theory is that making the users work harder to read text
forces them to focus on the text more acutely, engaging deeper parts of their brains
than if they could simply breeze through it.

Visual programming environments create an ease of developing/creating programs
in a perspective that is fun and non-threatening. The hopes of an environment such
as this is that students will no longer feel anxiety and low self-esteem when
encountering CS; this way they will be more open to hopefully pursue a degree in CS.
Meerbaum-Salant, Armoni, and Ben-Ari mention how girls using Storytelling Alice
“demonstrated greater motivation and willingness to spend extra time on the
computer, when compared with those using generic Alice.” (Diemand-Yauman et al.,
2011).

However, an interesting raised by Meerbaum-Salant et al., (2013) was that they “de-
emphasize aspects of appearance such as the costumes, sounds and visual effects.”
Students tend to get distracted by these extraneous features. As an example, in the
study performed by Meerbaum-Salant, Armoni, and Ben-Ari, the authors found that
media manipulation was the focus for 21% of the students (Meerbaum-Salant et al,,
2013). While creativity is one of the major foundations in getting children in CS, it is
understandable how it can take away from learning, especially from the younger
students.

Help users recognize, diagnose, and recover from errors - Hints

If students are afraid of mistakes, then they are afraid of trying something new, of
being creative, of thinking in a different way. Studies in a secondary school (Mason
et al., 2016) have shown that when students are taught about growth mindsets and
that the brain is malleable, their motivation to learn dramatically increases.

the coalition
to diversify computing

N\ CRA-W

Computing Research Association Qi
Therefore, it is important that users of a tool are presented with an opportunity to

grow from their mistakes. The environment should make the user feel that it is
acceptable to make mistakes.

Y

Deep Shareability - Computer Clubhouses

The ability to share one’s work is important because it allows the student to become
more digitally fluent. To share projects with one another, it shows that they are
designers and creators using digital technology (Resnick, 2001). In addition, for
students to share their projects with others, they are able to exchange knowledge. In
other words, students must be able to “make things” with a computer language and
if one student does not know how to do a particular task, by sharing projects that
student can see how the other student completed it (Resnick, 2001). The goal of this
deep shareability is to “not to teach basic skills, but to help young people learn to
express themselves and gain confidence as learners” (Resnick, 2001). The students
also learn how to work with one another and how to view someone else’s project
through the eyes of the creator.

This information aided in creating the rubrics used in the appendices to evaluate
eight existing block languages. The rubric is presented below.

Block Language Evaluation Rubric
The purpose of this rubric is to evaluate block programming languages from a user’s perspective. Each language
evaluated will receive a number of points for each feature determined by how well the language meets the
requirements of each point value.

Feature

0 Points

1 Point

2 Points

3 Points

Clear Goal/Purpose of

There is no clear

The purpose of

The purpose of the

The purpose of the

permitted. (The
user cannot design
their character,

creative options
are given, but
there are limited

are given, but there are
a variety of attributes.

Application goal or purpose of [the application is| application is application is clear and
application. confusing and understood, but it is users can easily
unclear. not intuitive. understand the assigned
tasks.
Creativity Creativity is not One to two Few creative options The software allows for

user creativity with
many attributes.

extrinsic rewards.
(No rewards for
continual success,
bonus games)

extrinsic rewards
are given. (Extra
points)

rewards are given.

decorate, change [attributes.
color, etc.)
Extrinsic Rewards There are not any [One or two Several extrinsic The software promotes

the use of extrinsic
rewards throughout.
(Winning prizes, bonus
games, extra points)

the coalition
to diversify computing

N\ CRA-W

Computing Research Association

o

Positive Feedback No feedback is General General feedback is Detailed/specific
provided. feedback is given throughout the feedback is given to the
(recognition of given but only in| game. (i.e. “good job”) | user. (i.e. “That’s right
success) a limited about 2+2=4)
(i.e. only at the
end of the level)
Appropriate Applicable Terminology Language/vocabulary | Both the
Terminology and terminology is not [correlates to is appropriate to the language/vocabulary
consistant (Related to used throughout [programming intended user but does | match the intended user

age level as well as

the application.

terminology but

not easily translate to

and correlate to

correlates to (age appropriate [is not applicable | programming programming
programming language to the age languages. languages.
terminology) depending on group..

grade level based

off of further

research)
Appropriate Symbolism | Appropriate Several symbols | Limited graphics are The usage of visual

(i.e., container blocks
look like containers)

Symbolism is not
used. (loop blocks
look like such,
visual
representations of
items are accurate)

are used but are
not graphically
appealing to the
user. (too large
or small given
the assigned
tasks)

used, but all are
graphically appealing.

representations is
diverse and appropriate
for the assigned tasks.

Attractive

Not consistent,

Inconsistencies

Some inconsistencies

Simple, clean, and

Text/Aesthetics/Visually | and a lot of in the design. in the design, overall consistent; The design
Consistent irrelevant Some irrelevant | aesthetically pleasing. | that is aesthetically
information is information No irrelevant pleasing and contains
shown. displayed. information displayed. | no irrelevant
information.
Constructive Feedback/ | The software does |Easy to find Easy to find help, but The software provides
Help users recognize, not give problem |help, but the the hints are adequate. | detailed problem hints
diagnose, and recover hints or assist hints are Tells the user the for users, and assists

from errors (problem
hints)

users in
discovering the
correct answer.

inadequate. Do
not tell the user
the mistake.

mistake but no hints or
explanation.

them in recognizing,
diagnosing and
recovering from their
errors. Provides
suggestions on how to
fix the mistake.
Provides an
explanation.

Learn by
mistakes/Accessibility
to return to previous
lessons

No instructions are
given to go back
to previous steps.
No way to correct
mistakes.

Unclear
instructions to go
back to previous
steps. Difficult
to correct
mistakes.

Able to navigate
through previously
learned material. Able
to correct mistakes.

Easy to go back to the
previously learned
material. Easy to
correct mistake.

the coalition
to diversify computing

Computing Research Association

-

Y

Visibility/Audibility of
System Status

System status
within the
software is not
shown or heard by
user.

The user obtains
updates on their
status but is not
consistently
aware of where
they stand.

A visual status bar is
displayed making the
user aware of status,
but audio cue is used
to notify the user of
status.

The user is consistently
made aware of their
status and progress
within the software
through the use of a
visible status bar or
audio reinforcement.

Instruction
Manual/Documentation
(usage hints - block
doesn’t fit)

No manual is
provided. No
usage hints for
users.

Instructor is
provided
documentation
that is not clear
or easily
navigable.

Instructor is provided
documentation that is
clear but not easily
navigable.

The user is given

occasional usage hints.

The Instructor is
provided with adequate
documentation on the
software. The user is
given usage hints. (they
are told when blocks do
not fit.)

Shareability
(transference of created
task to other public
forms i.e. can be sent
through email, posted
online)

The document
does not allow for
easy shareability.

The software
allows for
shareability with
a limited number
of applications
but requires
external
software, or it
not easily
accessible.

The software allows
for shareability with a
limited number of
applications but easily
accessible.

The software allows for
easy shareability in a
variety of formats and
manners.

References

AccessComputing. (2016). http://www.washington.edu/accesscomputing/.

AccessCS10K. (2016). http://www.washington.edu/accesscomputing/accesscs10Kk.

Allen, D. and Tanner, K. (2006). Approaches to Biology Teaching and Learning.
Rubrics: Tools for Making Learning Goals and Evaluation Criteria Explicit for Both
Teachers and Learner, CBE-Life Sciences Education. 2006. Vol 5, 197-203

Apone, K., Marina, B., Brennan, K., Franklin, D., Israel, M., and Yongpradit, P. (2015).
Bringing grades K-5 to the mainstream of computer science education. Proceedings
of the 46t ACM Technical Symposium on Computing Science Education (SIGCSE),
March 2015, Kansas City, MO, pp. 671-672.

Burgstahler, S. (2011). Universal design: Implications for computing education. ACM
Transactions on Computing Education (TOCE), vol. 11, 3, October 2011.

Chang, T. (2012). Using graphical representation of user interfaces as visual
references. Jun. 2012, Massachusetts Institute of Technology, pp. 1-133.

CRA-W c the coalition
‘ Computing Research Association , {0 diverSify Compu’[ing

Y

CS For All. (2016). https://www.whitehouse.gov/blog/2016/01/30/computer-
science-all.

Diemand-Yauman, C., Oppenheimer, D. M., and Vaughan, E. B. (2011). Fortune favors
the (): Effects of disfluency on educational outcomes. Cognition, 118(1), pp. 111-
115.

DO-IT. (2016). http://www.washington.edu/doit/.

Falcao, T. P. (2010). The role of tangible technologies for special education. Extended
Abstracts on Human Factors in Computing Systems (SIGCHI), April 2010, Atlanta, GA,
pp. 2911-2914.

Masip, L L, Granollers, T., and Oliva, M. (2011). A heuristic evaluation experiment to
validate the new set of usability heuristics. Proceedings of 8th International
Conference on Information Technology: New Generations. IEEE Computer Society,
Washington, DC, USA.

Mason, A., Yerushalmi, E., Cohen, E., and Singh, C. (2016). Learning from mistakes:
The effect of students' written self-diagnoses on subsequent problem solving. The
Physics Teacher, 54(2), pp. 87-90.

Meerbaum-Salant, 0., Armoni, M., & Ben-Ari, M. (2013). Learning computer science
concepts with scratch. Computer Science Education, 23(3), pp. 239-264.

Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New
York, 1980.

Pasternak, A. (2016). Contextualized teaching in the lower secondary education
long-term evaluation of a CS course from grade 6 to 10. Proceedings of the 47t ACM
Technical Symposium on Computing Science Education (SIGCSE), March 2016,
Memphis, TN, pp. 657-662.

Resnick, M. (2001). Revolutionizing learning in the digital age. The internet and the
university: Forum, pp. 45-64.

Roque, R.(2007). OpenBlocks: an extendable framework for graphical block
programming systems. Diss. Massachusetts Institute of Technology, 2007.

Scratch Jr. (2016). https://www.scratchjr.org.
Suleyman, U., Karakus, M., and Turner, S. W. (2011). Implementing IT0/CSO with

scratch, app inventor forandroid, and lego mindstorms. Proceedings of the 2011
conference on Information technology education. ACM, 2011.

e~ CRA-W P coalition
‘ ‘: diversify computing

Computing Research Association

Y

Wing, J. M. (2006). Computational thinking. Communications of the ACM, vol. 49(3),
pp. 33-35.

[1T) Process

The preliminary step in our research process required an understanding what our
research is about. This meant answering many questions about our research, such as:
What do we want to create?

Who do we want to impact?

What will our contribution for world betterment be?

What do want our research to make a difference in?

As computer scientist, how can we use our skills to help others?

Ui Wi

After answering these preliminary questions, the scope of the project was important
to consider. The goal of the research project was to create a block programming
language for students with learning disabilities. It was important to determine if
anything existed that already accomplished this same goal. Fortunately, it was
concluded that nothing on the Internet exists in helping students with learning
disabilities how to program. Additionally, the main goal of existing block
programming languages is to teach students how to program. In order to create a
unique block programming language, the goal to help students’ confidence in their
reading and math skills, skills many students struggle with, would be the primary
goal while the block programming language discretely teaches students
programming principles.

The team then started researching and evaluating other block programming
languages, such as Scratch and Alice. Each team member played and interacted with
the block languages and made a list of likes/dislikes. From this step, the rubric for
Hopper’s Fables was created and sent to the College of Education to revise, ensuring
it was realistic for students with learning disabilities as well as to meet pedagogical
standards.

While performing this research and constructing the rubric, the team studied
HTML/CSS, Javascript, and Blockly’s API in preparation of creating the actual block
language, Hopper’s Fables.

Once approved by the College of Education, evaluations of existing block languages
began as well as construction of Hopper’s Fables. The first step was to create a
GitHub repository for the team to better enable collaboration. The next step was to
inject Blockly into our workspace and create our own blocks. Each of us made a block
to get a feel for it and learn how to make custom blocks to match how we wanted
them to look.

10

e~ CRA-W P coalition
‘ ‘: diversify computing

Computing Research Association

Y

Currently, we are creating the graphics for Hopper’s Fables and the interface it will
go on as well as creating more blocks with working functionalities using JavaScript.
Once these last steps are completed, we will have created a basic setup of Hopper’s
Fables and will continue to develop it.

[V) Results and Discussion

Originally, this project aimed to produce two types of results: 1. Evaluations of
existing block programming languages and 2. User data based on a custom-built
language. However, as we tackled the various milestones of this project, it became
evident that there was additional information needing to be collected including
terminology data. As a result, we constructed a terminology study, which will be
performed this summer at a Girls, Inc. summer camp. The primary results we have
to date are the evaluations of eight different block programming language, which
helped in forming the requirements needed to develop a custom block language.

There are several block programming languages that we evaluated against the
rubric: Scratch, three selections from Code.org, Snap, Alice, Scratch, Jr., and MIT App
Inventor. The purpose of evaluating existing block programming language was to
determine the strengths and weaknesses that we could either implement into our
language or change in order to improve the overall quality.

Based on the evaluation of Scratch (Appendix A), it is a well-designed language for
student creativity. The language is not necessarily in the format of a game so it does
not provide extrinsic rewards or feedback. In fact, the language allows for students
to create games themselves. Scratch exhibits the following characteristics: clear
goal, creativity, and aesthetics. The users are able to select from tutorials of what
they would like to create and are able to develop anything they would like.
Appropriate terminology is used as well; words such as turn, move, and glide are
easy to understand for the intended audience. If users have questions, they can refer
to the documentation. Scratch has sharing capabilities, which allows users to
collaborate and share their progress.

We studied three selections from Code.org. The first one is Minecraft (Appendix B);
it is well designed and helpful for students who are learning how to code; however,
the game lacks in creativity, extrinsic rewards, and sharing ability because the game
was premade. While it has a status bar, it does not remind the user of how far they
have progressed. On the other hand, the goal is clearly established with each
mission. Also, some positive attributes are that the game provides feedback both
positive and constructive. For example, a congratulations window is prompted
when a mission is completed and an option to view the code is also accessible to the
users. In addition, most of the terms are appropriate for the audience, and
instructions are provided. Some of the terminology is more in line with the game

11

‘A CRA-W o coalition

‘: diversify computing

Computing Research Association

Y

rather than with coding. Some of the terms such as “spear” or “birch” may not be
appropriate for the audience as they may not know these terms. Overall, Coge.org’s
Minecraft rated extremely well against the rubric.

The next Code.org Hour of Code instance evaluated was Frozen (Appendix C), which
ranked extremely high compared to the other languages. During the evaluation,
there were very few faults that were found in the language. The goal and purpose is
clear throughout the duration of the game; there are creative attributes and
extrinsic rewards where users win prizes, bonus games, and extra points. It also
provides positive feedback by saying good job when a level is completely
successfully as well as constructive feedback with detailed hints for the users to
recover. The terminology and symbolism are also appropriate for Code.org’s
intended audience and correlate with programming languages. The overall appeal of
the game is positive and attractive to users.

The last Code.org Hour of Code instance that was evaluated was Moana (Appendix
D). Overall, this game ranked very well compared to the other block programming
languages. Attributes such as establishing a clear goal, using programming
terminology, and providing feedback were all included in the game. The users are
told at every level what the purpose and goal was and how to be successful. The
terminology was simple and consistent which allowed the users to easily
understand what they are able to do, and if a mistake was there, detailed feedback
was provided that navigated the users to completing the level. Furthermore, the
language was aesthetically appealing both visually and audibly. Also, users have
many ways of gaining help whether it was through the user of the manual or reading
the hints that are provided. In conclusion, the Code.org programming languages are
well designed and have a lot of features that we would like our language to have.

The next languages that were evaluated were Snap! (Appendix E) and Alice
(Appendix F). There were some positive attributes in this language such as the use
of appropriate terminology that both correlated with the intended user and to
programming languages; the usage of visual representations is diverse and relates
to the assigned tasks; and the aesthetic and audible appeal of both languages. Snap!
provides increased creativity as the levels progress and allows for shareability, but
it does not provide extrinsic rewards, positive or constructive feedback, or illustrate
a clear purpose of the language. In a similar manner, Alice did not perform well
against the rubric. The language is very different to understand and navigate and is
not appropriate for younger children trying to learn how to programming. It nearly
had none of the attributes in the rubric; however, there is a high level of creativity,
which contributed to the detriment of the language because it took away the
purpose of the software. Alice did provide many avenues of sharing one’s code, but
in all, it is not a good example of the goal of our language.

12

oo CRA-W the coalition
‘ Computing Research Association C tO diverSify Compu“ng

Overall, Scratch, Jr. (Appendix G) performed better against the rubric than MIT App
Inventor (Appendix H). Scratch, Jr.’s block terminology matches the intended users
and its simplicity made it very easy to understand. In addition, the aesthetics were
simple, clean, and consistent, which were found to be very helpful considering the
target audience is younger children. One of the characteristics of MIT App Inventor
that performed well against the rubric was shareability; the language allows users
to easily share their project in a variety of formats. Scratch Jr. provided another
form of structure that this research group took into consideration and had to make a
decision on before starting implementation: block alignment. The alignment of
blocks fit horizontally rather than vertically in Scratch, Jr. Other languages such as
MIT App Inventor and the Code.org selections have their block alignment vertically,
which illustrates how actual lines of code during programming would look. This
posed a conflict to the development of Hopper’s Fables because to foster English and
sentence structure, horizontal blocks may be more aesthetically appealing, but in
order to foster programming structure, vertical alignment may be more useful. In
the end, the research team decided to maintain the consistency of other languages
and impose the vertical alignment, which is also how Blockly languages are
constructed. As a result, the research team was able to gain some important
knowledge and narrow the focus of our language.

Other results of our work can be seen in

Appendix I: Blocks required for Hopper’s Fables,

Appendix]J: Common Core Math for First Grade,

Appendix K: Common Core Vocabulary for First Grade, and
Appendix L: First Day of School Storyline.

Two of the graphics for Hopper’s Fables are pictured below: Admiral Grace Hopper
(Figure 2) and the introductory screen (Figure 3). The language is built around a
student’s first day of school (Appendix L).

Figure 2. Admiral Grace Hopper

13

CRA-W g the coalition
Computing Research Association to diversi fy compu tin g

Women

WELCOME TO THE FIRST DAY OF SCHOOL!

To kegn chowae ¢ charecter;

o — -

10

‘o @

Figure 3. Introduction Screen

V) Future Work
As we progress with the project over the summer, we will advance into further
development, testing, and delivery. The development stages involve developing all the
graphics, developing the blocks, and the Blockly API and functionality. Development
also includes ensuring an understanding of the Common Core requirements and the
knowledge of our user base, first grade students. Testing of the software involves both
testing the actual code and acceptance testing. Testing the code will ensure it works as
intended for a variety of scenarios and cases. Acceptance testing involves testing the
language with users to ensure it meets standards and is understood as intended. These
users will be elementary school students who would most likely use this software, and
studies will be coordinated with Girls, Inc. of Greater Atlanta. The last phase is delivery,
which involves dispersing the software, which we will do by making the block language

available online. This also includes written up formal documentation and papers on the
overall research experience and our results.

VI) Web Links
All of our work is being stored on GitHub with a wiki page about the project:
https://github.com/awagne30/ksu-creu-2016/wiki

The GitHub page with our code is:
https://github.com/awagne30/ksu-creu-2016

We wanted a more creative interface for the project so we created a wordpress site:
https://hoppersfables.wordpress.com

14

https://github.com/awagne30/ksu-creu-2016/wiki
https://github.com/awagne30/ksu-creu-2016

CRA-W g the coalition
Computing Research Association to diversi fy compu tin g

Women

VII) Presentations and Publications
ACM Mid Southeast 2016: Hopper’s Fables, Abstract with Presentation
ACM SIGCSE 2017: Hopper’s Fables: A Mathematical Storytelling Adventure, Poster

Presentation

15

Appendix A: Scratch Evaluation

« Clear Goal: 3
« Very clear goal, you can select from tutorials of what you'd like to
create
* Creativity: 3
« Scratch allows the user to create virtually anything they’d like
« Extrinsic Rewards: 0
« Positive Feedback: 0
« Appropriate Terminology: 3
« Words such as turn, move and glide are easy to understand for the
intended audience.
« Ifthey are not understood, they can go into the documentation and
access the information on blocks in there.
« Appropriate Symbolism: 3
« Attractive Text/Aesthetics: 3
« Very simple, white and light gray design.
« Since the language has its own design features. It ensures that your
design will not be affected by the system’s design.
« Constructive Feedback: 0
« Learn by Mistakes: 0
« Visibility/Audibility of System Status: 0
« Notincluded, nor necessary. There isn’t a status option because it is
created for you to do on your own time.
« Instruction Manual/Documentation: 3
« Increate mode, you are able to select a step-by-step directions for a
limited list of projects.
« There is also documentation on how to and about the blocks
themselves
« Shareability: 3
 Itliterally has an option of sharing your game displayed

Share Yur e laal=

« My evaluation description:

« Scratch is a well-designed language for student creativity. The
language is not necessarily in the format of a game so it does not
provide extrinsic rewards of feedback. In fact, the language allows for
students to create games themselves.

Appendix B: Code.org Minecraft Evaluation

Clear Goal: 3
« The game tells you what the goal is to complete in each mission.
Creativity: 1
« Since the game is premade, there is little room for creativity because
there are missions to be completed. However, you are able to choose
between 2 premade characters.
Extrinsic Rewards: 0
« There are no awards or points.
Positive Feedback: 3
« Prompted with a congratulations window and the option to view the
code you have written.
Appropriate Terminology: 2
« Ihave already evaluated the terms used. These may include words
such as congrats, turn, etc. Most of the terms are appropriate for the
audience.
« In my opinion, some of the terms such as spear or “birch” may not be
appropriate for the audience as they may not know these terms.
Appropriate Symbolism: 3
« The game appears like the usual Minecraft game with abstract
features as everything is represented as a block.
Attractive Text/Aesthetics: 3
* Nice and neat gray design. The game appears like any normal
Minecraft game.
« Not distracting.
Constructive Feedback: 3
« Example: “Not quite. You have to use a block you aren’t using yet”.
Learn by Mistakes: 3
« When you have not completed an assignment, you are prompted with
a message that you haven'’t entirely completed the mission.
* You can then click, reset in order to reset the mission. Or can just add
on the code you missed.
Visibility/Audibility of System Status: 2
« At the top of the window, there is a status bar that lets you know what
section you are working on.
Instruction Manual/Documentation: 3
« The game offers a need help section on each page in which you can
click in order to view videos and see helpful hints.
Shareability: 0
« The software cannot be shared, however, you may get a certificate
saying you have completed an hour of code for this game.
My evaluation description:
« Minecraft Hour of code game is well designed and helpful for students
who are learning how to code. The game lacks in the way of creativity

and while it has a status bad it does not remind the user of how far
they have progressed.

Appendix C: Code.org Frozen Evaluation

Feature

Clear Goal/Purpose of
Application

Creativity

Extrinsic Rewards

Positive Feedback

Appropriate Terminology and
consistant (Related to age
level as well as correlates to
programming terminology)

Appropriate Symbolism (i.e.,
container blocks look like
containers)

Attractive
Text/Aesthetics/Visually
Consistent

Constructive Feedback/ Help
users recognize, diagnose, and

Rating Explanation/Comments

5

Excellent!
The goal of the game is clear.

Excellent!
Very creative language, it has many fun
attributes.

Excellent!
The software promotes the use of
extrinsic rewards throughout. (Winning
prizes, bonus games, extra points)

« Hour of code diploma

* Bonus

Excellent!
« Hints all the time
« Hints throughout videos and
sounds
« Visible area for hints

Excellent!

Simple, clear, (age appropriate)

Both, the language and vocabulary match
the intended user and correlate to
programming languages

Excellent!

Very appropriate symbolism for the
assigned tasks

The representation of programming
statements is great.

Excellent!

Simple, clean, consistent, and organized.
The design is very attractive and easy to
navigate it. And, contains no irrelevant
information

Excellent!

recover from errors (problem
hints)

Learn by
mistakes/Accessibility to
return to previous lessons

Visibility /Audibility of System
Status

Instruction
Manual/Documentation (usage
hints - block doesn't fit)

Shareability (transference of
created task to other public
forms i.e. can be sent through
email, posted online)

The software provides detailed problem
hints for users, and assists them in
recognizing, diagnosing and recovering
from their errors. (by using videos,
sounds and examples) Provides
suggestions on how to fix the mistake.
Provides an explanation.

Excellent!

Very easy to go back to the previously
learned material, and easy to correct
mistake.

Excellent!

« Nice and visible status bar.

« The user is consistently made
aware of their status and progress
within the software.

« Audio is used to notify user status

Excellent!

The user is given usage hints. (they are
told when there are missing blocks)
Hints are given though sounds, videos,
and other documentation.

Excellent!
Progress and current work is saved
automatically

Appendix D: Code.org Moana Evaluation

CODE.ORG MOANA

Feature

Rating

Explanation/Comments

Clear Goal and Purpose of
Application

3

28 seconds: Introduction Video -
“Our me and our team, the Village of
Coders, in discovering and
navigating the new world of coding
to help defeat the Kakamora on our
latest journey!

Based on the movie where she has to
defeat them things as well; shows a
clip from the movie explaining
Importance of coding, advertising
Hour of Code

Each level gives an explanation of
what the purpose of this level is for

Creativity

Not very creative

Atlevel 11, the user is able to choose
one of two characters to go on ship
with

Extrinsic Rewards

No extrinsic rewards are given

Positive Feedback

“Well Done” after level completion
Celebratory music is played
Graphics are appealing

Appropriate Terminology
and consistent (Related to
age level as well as
correlates to programming
terminology)

Text is simple and easy to
understand (age appropriate)
Loops and conditional statements
can be easily translated into if and
for loops

Appropriate Symbolism

The ability to connect blocks show a
sequential order of code

Loops allow for statements to be
executed inside

If.. do statements

Attractive
Text/Aesthetics/Visually
Consistent

Extremely attractive; feel like you
out at sea; music, flowers, tribal
print

Moving waves of the ocean

Feel of the wind blowing the boat
Text is clear, concise

Appropriate ocean, Hawaii like
music plays in the background
Water makes sounds

Constructive Feedback/

“Oops” on wrong answers (graphic

Help users recognize,
diagnose, and recover from
errors (problem hints)

image of the characters looking mad
atyou)

Ex: “Add move forward three times
to reach the fish”

Hints on what and how many blocks
to use

Hints are only displayed if level
completion was wrong

Learn by
mistakes/Accessibility to
return to previous lessons

You are able to go back

Hint button that will give you a
description of what to do in order to
complete the level

Visibility /Audibility of
System Status

Level completion and current level
status is displayed at the top of the
screen

No audio display of level completion

Instruction
Manual/Documentation
(usage hints - block doesn’t
fit)

Gives a tutorial of the game display
« Leftis the MOANA game
space
e Instruction are above the
game space
« Tool box in the middle: block
commands you can use
* Yellow space: workspace,
build program
« Shows the number of blocks
you will need in order to
solve the puzzle
« Dragand Drop attributes;
delete
e Introduction video for loops
Instructions are given in text and
audibly during the course of the
game
However, each level does not give
audio instructions

Shareability (transference of
created task to other public
forms i.e. can be sent
through email, posted
online)

No Ability to share code

Appendix E: Snap! Evaluation

Snap!

Build Your Own Blocks
https://snap.berkeley.edu
Feature Rating | Explanation/Comments
There is no clear goal or purpose of the
Clear Goal/Purpose of 1 application; there are not clear
Application instructions where to start and how to
start.
There is not creativeness in the design
and structure of the language. It is not an
Creativity 9 attractive language. however, once you
get familiar with the language it allows
you to colors, features, sounds and other
features in the games.
Extrinsic Rewards 0 No rewards
Positive Feedback 0 No feedback at all
Appropriate Terminology and Both the language/vocabulary match the
. intended user and correlate to
consistant (Related to age level .
programming languages
as well as correlates to 5 o _
rogramming terminology) « Textis simple; short and common
p words (age appropriate)
The usage of visual representations is
diverse and appropriate for the assigned
tasks.
Appropriate Symbolism (i.e., .))
container blocks look like The symbolism is great in programming
. 5 concepts
containers)
* Loops
« setvariables
« operators
Attractive 3 « The colors and text is attractive

Text/Aesthetics/Visually

but the design in general is not.

Consistent « The stage (the display area) is
boring
« Contains no irrelevant
information
Constructive Feedback/ Help
users recognize, diagnose, and
recover from errors (problem No feedback given

hints)

Learn by
mistakes/Accessibility to
return to previous lessons

There is an option to go back

Visibility /Audibility of System
Status

e There is not a visual status bar
display

« But, there a sound pallet that the
user can use at any time to give
sound to the game

Instruction
Manual/Documentation (usage
hints - block doesn’t fit)

« No hints

e There are manuals in the Snap
website but not inside the Snap
game environment. So If the user
needs help, he/she has to go to
the website and find the manual.

Shareability (transference of
created task to other public
forms i.e. can be sent through
email, posted online)

The software allows for easy
shareability in a variety of formats and
manners.

e Arduino

« Lego NXT package

Appendix F: Alice Evaluation

Feature Rating | Explanation/Comments
Clear Goal and Purpose of Application | 0 « Lacks a plot or a purpose
Creativity 3 « Numerous amounts of
features, attributes
« One can say it has too
many options because the
selection is so expansive
Extrinsic Rewards 0 « No rewards are given
Positive Feedback 0 « No feedback is given
Appropriate Terminology and 3 « Very technical terminology
consistent (Related to age level as that easily relates to a
well as correlates to programming programming language
terminology)
Appropriate Symbolism 3
Attractive Text/Aesthetics/Visually 1 e The graphics are very
Consistent simple
« There is a lot of text that
give a cluttered feeling
Constructive Feedback/ Help users 0 « No constructive feedback
recognize, diagnose, and recover from is given
errors (problem hints)
Learn by mistakes/Accessibility to 0 « There are not any levels
return to previous lessons
Visibility /Audibility of System Status | 0 « No progression of status is
given
Instruction Manual/Documentation 3 « There is a help menu tab
(usage hints - block doesn't fit)
Shareability (transference of created | 3 « Can easily save progress

task to other public forms i.e. can be
sent through email, posted online)

and current work

Appendix D: Scratch, Jr. Evaluation

Feature Rating | Explanation/Comments

Clear Goal and Purpose of 4 « Goal: Students to create

Application interactive stories and games

Creativity 5 « Students can snap together
graphical programming blocks
to make characters move,
jump, dance, and sing.

« Students can can modify
characters in the paint editor,
add their own voices and
sounds, even insert photos of
themselves and then use the
programming blocks to make
their characters come to life.

Extrinsic Rewards 5

Positive Feedback 0

Appropriate Terminology and 5

consistent (Related to age level as

well as correlates to programming

terminology)

Appropriate Symbolism 4

Attractive « Interface and programming

Text/Aesthetics/Visually language are developmentally

Consistent appropriate for younger
students.

« Designed features to match
young students cognitive,
personal, social, and emotional
development.

Constructive Feedback/ Help 4

users recognize, diagnose, and

recover from errors (problem

hints)

Learn by mistakes/Accessibility to | 0

return to previous lessons

Visibility /Audibility of System 4

Status

Instruction 5 « Hasa section tab called

Manual/Documentation (usage
hints - block doesn’t fit)

“Learn”, which is very
informative with graphics and
arrows to show what the
Scratch Jr. interface is able to
do. AKA infographics ?

Shareability (transference of
created task to other public forms
i.e. can be sent through email,
posted online)

Appendix H: App Inventor Evaluation

Feature Rating | Explanation/Comments

Clear Goal and Purpose of 5 « Allows even an

Application inexperienced student the
ability to create a basic, fully
functional app within an
hour or less.

Creativity 5

Extrinsic Rewards 5 « Thereward of having a
simple functioning app

Positive Feedback 0

Appropriate Terminology and 5

consistent (Related to age level as

well as correlates to programming

terminology)

Appropriate Symbolism 4

Attractive Text/Aesthetics/Visually | 3

Consistent

Constructive Feedback/ Help users | 0

recognize, diagnose, and recover

from errors (problem hints)

Learn by mistakes/Accessibility to 0

return to previous lessons

Visibility /Audibility of System 4

Status

Instruction Manual/Documentation | 0

(usage hints - block doesn't fit)

Shareability (transference of created | 5

task to other public forms i.e. can be
sent through email, posted online)

Appendix I: Blocks required for story.

¢ Getting Ready for School

X/
°

X/
°

X/
°

>

VVVYY A\

A\

>

>

Block: “My character is” -drop down option of names of different characters

* On execution, the outline of the character is yellow as if it is selected. Then, the
scene will change to kitchen

Block: “For breakfast, [would like to eat” - drop down menu of breakfast options

“apple”, "yogurt”, “cereal”

* On execution, that food item is brought to the table for the user to eat

Block: “Move forward”

Block: “Turn Right”

Block: “Turn Left”

Block: “Sit at kitchen table”

* On execution, the student sits down at the table and food is in front of them with
a glass of juice

Block: “Eat”

* Sounds of someone eating food; Food item disappears and a mess appears (plate,
napkin, glass of juice empty)

Block: “Clean Dishes”

* On executions, Sounds of watering running; Clean dishes appear on the counter

Block: “Pick up book bag”

» User picks up book bag

Block: “Go to bus”

* scene switches to outside where the bus is waiting

Block: “Get on bus”

Entering the Classroom

>

>
>

Block: “Put book bag in cubby”

* On execution, book bag is in the shelf

Block: “Sit down”

Block: “Say”-dropdown option “Hello, do you want to be friends?”, “What is your
name?”

= “Hello, do you want to be friends?” Option: “Yea, sure. | would love to.”

» “What is your name?” Option: “My name is Sophia. Nice to meet you.”

Lunchtime

>

Block: “Say”-dropdown option “Hello, do you want to be friends?”, “What is your
name?”

= “Hello, do you want to be friends?” Option: “Yea, sure. | would love to.”

» “What is your name?” Option: “My name is Sophia. Nice to meet you.”

Block: “Sit next to your friend”

Block: “Say”- “What did you get for lunch?” or “Today has been fun”

» “What did you get for lunch?” Option: “I got chicken tenders. They are so good.”
» “Today has been fun” Option: “It has been great. I love school.”

Recess

>

Block: “I want to play” -dropdown menu with the options “soccer” or “on the jungle

»

gym
» “soccer” option: the scene changes to the soccer field and the goal

* Block: “Kick ball into goal” -dropdown option of how many times (1-5) the
ball will be kicked into goal
4 On execution, a loop should have the user kick the ball into goal
* “on the jungle gym” option: the scene changes to the slide part of the jungle gym
» Block: “Slide down the slide” - -dropdown option of how many times (1-5) the users
will slide down the slide
* On execution, a loop should iterate how many times the user is sliding down the
slide
¢ Class Activity
» Block: “The book I would like to read is” - dropdown options “Dr. Suess”, “My Best
Friend”, and “How to be a Good Dog”
* “Dr. Suess” Option: that book is selected
» “My Best Friend” Option: that book is selected
» “How to be a Good Dog” option: that book is selected
» Block: “Hand book to teacher.”
» Block: “Say”{ - dropdown options “We should read this.”, “I like this is book”
% Going Home
» Block: “I want to sit next to” - dropdown options “Cat”, “Bear”, “alone”
» “Cat” Option: user goes to sit next to Cat
= “Bear” Option: user goes to sit next to Bear
» “alone” Option: user goes and sits in a empty seat

Appendix J: Common Core Math for First Grade

In Grade 1, instructional time should focus on four critical areas:

1.

O

2.

3.

Developing understanding of addition, subtraction, and strategies for addition and
subtraction within 20.

Students develop strategies for adding and subtracting whole numbers based on
their prior work with small numbers.

add-to, take-from, put-together, take-apart, and compare situations to develop
meaning for the operations of addition and subtraction,

Develop strategies to solve arithmetic problems with these operations.

Students understand connections between counting and addition and subtraction
Adding two is the same as counting on two.

Developing understanding of whole number relationships and place value, including
grouping in tens and ones

o Methods to add within 100 and subtract multiples of 10.
o Compare whole numbers (at least to 100) to develop understanding of and

solve problems involving their relative sizes.

o think of whole numbers between 10 and 100 in terms of tens and

ones

o recognizing the numbers 11 to 19 as composed of a ten and some
ones

o understand the order of the counting numbers and their relative
magnitudes.

Developing understanding of linear measurement and measuring lengths as
iterating length units.

Students develop an understanding of the meaning and processes of
o Direct measurement, including underlying concepts such as iterating (the mental

activity of building up the length of an object with equal-sized units)
o Indirect measurement.

Reasoning about attributes of, and composing and decomposing geometric shapes.
Students compose and decompose plane or solid figures

Example:

o put two triangles together to make a quadrilateral

o Combine shapes and recognize them from different perspectives and
orientations

o describe their geometric attributes, and determine how they are alike and
different

o develop the background for measurement and for initial understandings of
properties such as congruence and symmetry.

Grade 1 overview

operations and algebraic thinking
e represent and solve problems involving addition and subtraction.

. Understand and apply properties of operations and the relationship between
addition and subtraction.

e add and subtract within 20.
e Work with addition and subtraction equations.
number and operations in Base ten
e extend the counting sequence.
e Understand place value.
e Use place value understanding and properties of operations to add and subtract
measurement and data
e measure lengths indirectly and by iterating length units.
e tell and write time.
e represent and interpret data.
Geometry

. reason with shapes and their attributes.

Mathematics

Term

Definition

Addition

the operation of combining numbers so as to obtain an equivalent simple quantity

Subtraction

the operation of deducting one number from another

Sum the whole amount

Difference The degree or amount which things differ in quantity or measure
Group To combine

Counting on To start with a number in a counting sequence and continue
Making ten To make a set of ten

Combinations Different ways to solve a problem (example : 2+2= 4, 3+1=4, 4+0=4)
Equal sign =

True Exact or accurate

False Incorrect, wrong

Unknown Not known; not within the range of one’s knowledge

Digits Number figures: 0-9

Two-digit number

Numbers having two digits; each digit is a different place value

Greater than sign

>

Less than sign

<

Mental math Math calculated in a student’s head without paper and pencil
Unit Standard for measurement
Centimeter Unit of the metric system
Inch A unit of measurement equal to 1/12" of a foot
Hours A measure of time equal to 60 minutes
Half hour A measure of time equal to 30 minutes
Minute The unit of time with equals 60 seconds
Digital Expressed in digits
Clock An instrument that measures time
Trapezoid A four sided plan figure with two parallel sides
Half-circle A portion that is equivalent to %
Quarter-circle A portion that is equivalent to 1/4"
Cube A regular solid with six equal squares
Rectangular A parallelogram with all right angles
Prism A solid figure with triangular ends and rectangular sides
Cone A solid body that is tapered evenly to a point from a base that is circular
Cylinder A long round body that is either solid or hollow
Half Being one of two equal parts
Fourth Being one of four equal parts
Quarter (fraction) Being one of four equal parts

Appendix K: Common Core Vocabulary for First Grade

Core vocabulary describes a small set of basic words in any language that are used
frequently and across contexts [1]. Core words tend to be pronouns, verbs, and
demonstratives because they represent words that generally do not change [2]. Words like
“big,” “little,” “give,” “eat,” “go,” and “you” are examples of core vocabulary terms used
every day in many situations. Research shows that 80% of what we say is communicated
with only the 200 most basic words in our language.

» «

The vocabulary words for first graders will enhance their ability to read, comprehend,
communicate, and learn.[1] According to the article “Picturing Language: A ‘How-To’
Workshop” by Brunce Baker in 2012, this is the word list known at the end of first grade

List 1 List 2 List 3

a an after again an

and are any

away big blue at as

can come ate ask

down find be black brown but by could every fly from give going
for funny did had has her him his how last know
go do let

help eat four get good live may of

here have he old once open over put round some
in into like new stop take thank them then think walk
is no now on were when

it our

jump little look out please pretty ran

make me ride

my say

not one play she

red so soon that there

run said they this

see too want was well

the went what white who

three to win with

two

up

we where

yellow you

Furthermore, Hyde Park (NY) Central School District Search provides the following
vocabulary list on the district’s web site for first grade.

annoy ignore Prefer

http://www.hpcsd.org/search.cfm?rand=0.988279808353

attention
calm
comfortable
consequences
curious
curve

decide
directions
discover
disappointed
embarrassed
enormous
exhausted
explore

fair
fascinating
feast

focus
frustrated
gigantic
grumpy

huge

instead
investigate
invite
important
jealous
leader

list

listen
lovely
measuring
miserable
mumble
negative
nervous
nibbled
note
notice
observing
opposite
ordinary
positive

precious

Problem
protect
proud
question
reminds
repeat
report
rhyme
respect
searching
special
spotless
squirm
stomped
suddenly
suggestion
surprise
uncomfortable
warning
wonder
worried

English Language Arts Standards » Reading: Foundational Skills » Grade 1

Demonstrate understanding of the organization and basic features of print.

Recognize the distinguishing features of a sentence (e.g., first word, capitalization,

ending punctuation).

Demonstrate understanding of spoken words, syllables, and sounds (phonemes).

Distinguish long from short vowel sounds in spoken single-syllable words.

Orally produce single-syllable words by blending sounds (phonemes), including

consonant blends.

[solate and pronounce initial, medial vowel, and final sounds (phonemes) in spoken
single-syllable words.

Segment spoken single-syllable words into their complete sequence of individual
sounds (phonemes).

Know and apply grade-level phonics and word analysis skills in decoding words.
Know the spelling-sound correspondences for common consonant digraphs.
Decode regularly spelled one-syllable words.

Know final -e and common vowel team conventions for representing long vowel
sounds.

Use knowledge that every syllable must have a vowel sound to determine the
number of syllables in a printed word.

Decode two-syllable words following basic patterns by breaking the words into
syllables.

Read words with inflectional endings.

Recognize and read grade-appropriate irregularly spelled words.

Read with sufficient accuracy and fluency to support comprehension.
Read grade-level text with purpose and understanding.

Read grade-level text orally with accuracy, appropriate rate, and expression on
successive readings.

Use context to confirm or self-correct word recognition and understanding,
rereading as necessary.

Manual Core Word Board

this that $ will

...... 1T
)) T

Common Core Vocabulary - 1 st Grade

Language Arts

Retell To tell the story again

Characters A person in a story, novel, or play

Settings The background (as time and place) of the action of a story or
performance

Prose Writing that does not have the repeating rhythm used in poetry

Clarify To make or become easier to understand

. Something (as a title or an address) at the top or beginning (as

Heading
of a letter or chapter)

Table of Contents A list of parts or sections of a book and the pages on which they
start

Glossary A list of the hard or unusual words found in a book

Icons A symbol or pictorial symbol on a computer screen
Phonemes Speech sound
Two or three consonant letters whose sounds blend together
Consonant blends .
when forming a word (example: gl, bl, str)
Dieraphs A group of two successive letters who phonetic value is a single
grap sound (example: sh, th, wh, ch, ph)
A method of teaching beginners to read and pronounce words
Phonics by learning the phonetic value of letters, letter groups, and
especially syllables
A word placed in front of a noun or pronoun to show a
Preposition connection with or to something or someone (example during,
beyond, toward)
: : A word used to join or connect other words, phrases, sentences,
Conjunction
or clauses (example: but, and, or, so, because)
. A word that makes a specific denotation of a noun phrase
Determiners

(example: this, that, these, those)

Personal pronoun

a pronoun designating the person speaking
(example: I, me. we, us or the person or thing spoken about ie.
he, she, it

Possessive pronoun

One of several pronouns designating possession (example: they,
him, her, them)

Indefinite pronoun

A pronoun that does not specify the identity of its object
(example: any, some)

Verb

Words that show action (example: run, sit)

Narrative

List of events in a story

Informative /Explanatory
text

Reading that explains something

Temporal words

Words that show time (example: soon, tomorrow)

Common nouns

Names a person, place, or thing (example: desk, car, boy)

Proper nouns

Names a specific person, place, or thing (example: Walmart,
Susan, Jose)

Possessive nouns

Nouns that show ownership (example: Katherine’s, sister’s)

Singular nouns

On single noun (example: cat, dog)

Plural nouns

Names more than one noun (example: cats, dogs)

Sources

[1]Baker, B., Hill, K., & Devylder, R. (2000). Core Vocabulary is the same across environments.
Paper presented at a meeting of the Technology and Persons with Disabilities Conference
at California State University, Northridge.

[2]Stubbs, M. (1986) Language development, lexical competence and nuclear vocabulary.
In Durkin, K. (Ed.) Language Development in the School Years. London: Croom Helm.

Appendix L: First Day of School Storyline

« Prompt: “Welcome, today is the first day of school. To begin choose a

character”
« Block: “My character is” -drop down option of names of different
characters
« On execution, the outline of the character is yellow as if it is
selected

« Then, the scene will change to kitchen
« Prompt: “Let’s get ready for school!”

« Scene: Student is standing the kitchen; the student will see a kitchen
from birds eye view. The kitchen will have a door, a book bag on the
floor, a sink, a counter and breakfast options displayed on the counter

e Task 1: Student will choose Breakfast (Prompt: “Let’s eat
breakfast”)
« Block: “For breakfast, I would like to eat” - drop down
menu of breakfast options

« apple
e yogurt
« cereal

« On execution, that food item is brought to the
table for the user to eat
« Prompt: “Go to the table to eat your breakfast”
« Block: “Move forward”
« Block: “Turn Right”
« Block: “Turn Left”
« Block: “Sit at kitchen table”
* On execution, the student sits down at the
table and food is in front of them with a
glass of juice
« Block: “Eat”
« Sounds of someone eating food
« Food item disappears and a mess appears
(plate, napkin, glass of juice empty)
« Task 2: Student will put dishes in the sink (Prompt: “let’s clean
the dishes”)
« User walks to sink (Maybe a banana peel on the floor)
« Block: “Move Forward”
« Block: “Turn Left”
« Block: “Turn Right”
« Block: “Clean Dishes”
« On executions, Sounds of watering running
« Clean dishes appear on the counter
« Task 3: Student will grab book bag (Prompt: “the bus is here;
it’s time to go”)

« Bookbag sitting on the floor in the corner
« Block: “Move Forward”
e Block: “Turn Left”
« Block: “Turn Right”
« Block: “Pick up bookbag”
« User picks up bookbag
« Block: “Go to bus”
« scene switches to outside where the bus
is waiting
« Block: “Get on bus”

+ Enteringtheclassroom

« The first level is over and the user gets a congratulatory prompt.

« Scene: The next scene is in the classroom. Student will see a classroom from
bird eyes view. The classroom will include a shelf to a book bag (will
basically look like a brown box) and seats facing (will basically look like blue
squares) a board (basically look like a gray line about %2 in width). One
student (animal) will already be seated in one of the seats, and the student’s
seat will be next to that person. The teacher is off to the side.

« Prompt: “ Please put your book bag away”

« Task 1: Putting Book bag away
« Block: “Move Forward”
e Block: “Turn Left”
« Block: “Turn Right”
« Block: “Put bookbag in cubby”
« Bookbagisin the shelf
« Task 2: Sitting Down (Prompt: “Now it’s time to go to your seat; let’s
sit by the Cat, he looks nice.”)
« Prompt: How many empty seats are there?
« Block: “Move Forward”
e Block: “Turn Left”
« Block: “Turn Right”
« Block: “Sit down”
« Task 3: Say hello to their friend
« Block: “Say”-dropdown option “Hello, do you want to be
friends?”, “What is your name?”
« “Hello, do you want to be friends?” Option: “Yea, sure. |
would love to.”
« “What is your name?” Option: “My name is Sophia. Nice
to meet you.”

« Level 2 is completed.

+ Lunchtime

« Prompt: “I hope you're hungry! It’s lunchtime.”

« Scene: Student will see a bird eye’s view of a cafeteria. This will include a tray
area and places to sit(maybe like 3 circular tables with 4 chairs each)

« Task 1: Select a tray to choose what to eat.
* Move to tray area

« Block: “Move Forward”
e Block: “Turn Left”
« Block: “Turn Right”
« Block: “Pick up a tray”
« Block: “For lunch, I would like to eat” -dropdown option with
three options for lunch that are on the counter in from of the

user
« Peanut Butter and Jelly Sandwich
* Pizza

e Chicken Tenders
« Prompt: “Find a seat to eat your lunch”
« Block: “Move Forward”
« Block: “Turn Left”
« Block: “Turn Right”
« Block: “Sit next to your friend”
« Block: “Say”- “What did you get for lunch?” or “Today
has been fun”
« “What did you get for lunch?” Option: “I got
chicken tenders. They are so good.”
« “Today has been fun” Option: “It has been great. |
love school.”
+ Step4:Recess
« Prompt: “Let’s go outside and play!”
« Scene: A playground with a soccer area and a jungle gym with a slide
« Block: “I want to play” -dropdown menu with the options
“soccer” or “on the jungle gym”
« “soccer” option: the scene changes to the soccer field and the
goal
« Block: “Kick ball into goal” -dropdown option of how
many times (1-5) the ball will be kicked into goal
« On execution, a loop should have the user kick
the ball into goal
« “onthe jungle gym” option: the scene changes to the slide part
of the jungle gym
« Block: “Slide down the slide” - -dropdown option of how
many times (1-5) the users will slide down the slide
« On execution, a loop should iterate how many
times the user is sliding down the slide

. Promit: “Yai that was fun. Now it is time to go inside.”

« Prompt: “Recess is over, but let’s go back to the classroom it’s
Storytime!*

« Student will see a bird’s eye view of a classroom. The classroom will
have a bookshelf, a big rug with 3 other students (animals) sitting and
a teacher (animal) sitting on a chair in the front.

« Task1:

e Precondition: Student will start at the bookshelf
« Block: “The book I would like to read is” - dropdown options
“Dr. Suess”, “My Best Friend”, and “How to be a Good Dog”
« “Dr. Suess” Option: that book is selected
« “My Best Friend” Option: that book is selected
« “How to be a Good Dog” option: that book is selected
- Task2:
« Student will use a series of move/turn blocks to get to their
teacher.
« Block: “Move Forward”
« Block: “Turn Left”
« Block: “Turn Right”
« Student will select a block to hand the book to the teacher.
« Block: “Hand book to teacher.”
« Student will select a speaking block to say, “We should read
this”
« Block: “Say” - dropdown options “We should read this.”,
“I like this is book”

+ Task3:

« Student will use a series of move/turn blocks to get to their

seat on the rug.

« Block: “Move Forward”
« Block: “Turn Left”
« Block: “Turn Right”
« Math: How many empty seat are there?

« Students will select the block to sit.
« Block: “Sit down.”

.+ Step 6:Goinghome

« Prompt: “We have had a long day. It’s time to go home!”

« Student will see a bird’s eye view of the parking lot. The parking lot
will include at least 3 buses (remember bird’s eye) and a part of the
school (should look like a rectangle).

« Prompt: “Let’s get on the bus”
« Block: “Move Forward”
« Block: “Turn Left”
« Block: “Turn Right”
¢ Prompt: “Who should we sit next to?”
« Block: “I want to sit next to” - dropdown options “Cat”,
“Bear”, “alone”
« “Cat” Option: user goes to sit next to Cat
« “Bear” Option: user goes to sit next to Bear
« “alone” Option: user goes and sits in a empty seat
« Prompt: “You have made it home! Congratulations you have
completed the game”

	Final Report
	Rubric appendices A-H
	Appendix I - blocks
	Appendix J - math
	Appendix K - vocab
	Appendix L - Storyline

