Publishing Your Research

Margaret Martonosi, Princeton
Lydia Tapia, University of New Mexico
Margaret Martonosi Intro #1: The Technical Me…
Cornell BS EE ’86 -> Stanford PhD, 1994
Princeton 1994-now: Assist., Assoc., Full…
Research: Computer architecture and mobile systems. Power efficient systems. Memory model verification.
Margaret Martonosi Intro #2: Non-Technical Me
• Married 16 years to Kevin Burkman
• Met when we were both hike leaders for the Appalachian Mountain Club
• Other fun: Running, swimming, travel
About Lydia

• Ph.D. 2009, Texas A&M U.
• Postdoc 2009-2011, U. Texas Austin
• Assistant Professor 2011-2017, U. of New Mexico
• Associate Professor 2017-present, U. of New Mexico

• Interdisciplinary research in high-dimensional robotics
 – Robotics work with ECE and ME
 • Robotics venues
 • Control venues
 – Computational biology work with UNM Medical School, Biology, and Chemical Engineering
 • CS computational biology venues
 • Biology venues

• About my publication record
 – Pre-PhD 10 papers (2 papers/year)
 – Pre-tenure Faculty 34 papers (5.6 papers/year for 6 years)
Publishing Your Research

Part 1- The Publishing Process
Part 2- The Writing Process

Thanks to Holly Rushmeier for some of the material in these slides, which she, in turn, had adapted from previous Grad Cohort presentations and a Grace Hopper presentation by Jaime Treevan
The Publishing Process
The “Writing Bug”

Why?
It feels good:
• to share what you’ve done
• others to be interested
• to say how you’ve advanced state of the art!

So keep doing it -- as much as you can?
• Quality! Quantity varies by area
• Citations matter as career progresses
• Venue matters

It’s addictive!
Avenues for Publication

Examples from Robotics

IEEE Transactions on Robotics Journal

IEEE International Conference in Robotics and Automation

3rd Workshop on Machine Learning in Planning and Control

Workshop on the Algorithmic Foundations of Robotics
Avenues for Publication

Examples from Robotics
IEEE Transactions on Robotics Journal

Workshop on the Algorithmic Foundations of Robotics

IEEE International Conference in Robotics and Automation

3rd Workshop on Machine Learning in Planning and Control
Avenues for Publication

Examples from Robotics

IEEE Transactions on Robotics Journal

Workshop on the Algorithmic Foundations of Robotics

IEEE International Conference in Robotics and Automation

3rd Workshop on Machine Learning in Planning and Control

Additional
- Workshop Abstracts
- Doctoral Consortium Abstracts/Posters
- Conference/Workshop Posters

Other Outlets
- Thesis
- Software, patents, books, data repositories
- Social media: blogs, Twitter, YouTube

Feedback (prestige, field recognition, visibility)
IEEE Publication Cycle

Authors are NOT tied to this pipeline!

General idea holds in other fields

beginning of an idea, some evaluation

more evaluation, well thought out

well evaluated, complete idea
Workshop Process

Submission date usually after conference rejections
May have formal program committee
Usually high acceptance rate

Drawbacks:
- A lot of work (mini paper) for not a lot of prestige
- Acceptance is commitment to attend workshop
- Papers may or may not be archived!

Advantages:
- Early feedback on your work
Focus*: Conferences

Conference status is different in CS
- Primary outlet for CS (selective)
- Place to meet for other disciplines (not selective)

Not all conferences are equivalent
- Know top-tier conferences in your research area
- Acceptance rates/citations
- Sponsoring organizations

Acceptance is requirement for an author to attend
Visibility can be very high from giving a talk or meeting with other researchers

*Be sure to understand what is primary in your area of CS (especially if doing interdisciplinary research)
Conference Process

Uniform Submission Date
 Typically once/year
 May have separate abstract deadline

Program Committee
 May be hierarchical, may have non-committee reviewers

Decisions
 Single decision or rebuttal

Details vary by area and year
 Read the CFP carefully!!!
 Talk to Grad Cohort speakers from your area
Journal Process

- No fixed deadlines
- More space and time
- No travel or registration expenses (publication fee?)
- Can be hard to finish without a deadline
- Review cycle often much slower-- even over a year!
Journal Process

Outcomes

Accept
rare on first submission

Minor Revision
possibly accept

Major Revision
be attentive to suggestions; may have just one iteration to address them

Reject
review may specify “resubmit as new” vs. “hopeless”
Peer Review Process

- Reviewer selection
 - Drawn from citations, contacts, literature search
 - Uses keywords or categories (be aware of choosing too broadly)
 - Experts in the field
 - No conflicts of interest

- Single-blind - author does not know reviewers
- Double-blind - reviewers do not know author, author does not know reviewers
What Reviewers Look For

- Clear contribution
- Technical soundness
- Solid evidence

Rejection!
- What didn’t reviewers understand?
- How can I make it clearer?

Good writing will never make a paper. But, it helps to make contribution, technical soundness, and strong evidence clear!
The Writing Process
Writing Effectively

• Empathy for reader:
 – Get out of your head and into yours.
 – They haven’t been ”riding along with you” during your work; they just got here. Avoid “kidnapping them”. Tell them where you are going and why it matters.

• Short sentences
 – Humans stop and process information at the period (.) Give them more places to pause and process.

• Outline, clear sequencing, and topic sentences
 – Write out an outlined bullet list of sections and clearly sequenced key points.
 – Turn each key point as the topic sentence of a paragraph.
The Intro

- What is the problem?
- Why is it important?
- What have others done about it?
- What are you doing about it? (What is novel/different from others?)
- What are the takeaways? should the world learn from your work?
Scenario: Let’s improve this abstract!

Graph analytics form the basis for many important computational applications including machine learning, social network analysis. Graph analytics performance is an important metric, and both hardware and software acceleration can be applied. This work studies hardware and software methods that together improves runtime by 12% across a set of graph analytics benchmarks running on large-scale graphs. Our framework takes the vertex programming model as input for compatibility, but applies compiler optimizations and offers hardware support through a CAM-based edge access scratchpad memory.

-> What writing changes do you suggest?
Note: some might be simple rewrites of the info that is there, and other might require asking me to provide more info.
Graphicionado Approach

Graphicionado: A high-performance, energy-efficient graph analytics HW accelerator which addresses challenges in graph analytics computing

- **Vertex Programming Abstraction based HW Pipeline**
 - **Programmers**: specify computations for a graph algorithm
 - **Graphicionado**: efficiently supplies data for specified computations
 - Can handle multiple different algorithms with minimal reconfiguration

- **Domain-Specific Pipeline and Memory System**
 - ~3x speedup and 50x-100x energy efficiency over 32-core CPU
 - 1.5-4.5 Billion edges/s on 78 GB/s memory system
for (i=0; i<ActiveVertex.size(); i++) {
 vid = ActiveVertexID[i];
 vprop = ActiveVertexProp[i];
 eptr = PtrToEdgeList[vid];
 for (e = Edges[eptr]; e.src == vid; e = Edges[++eptr]) {
 res = Process_Edge(e.weight, vprop);
 temp = TempVertexProp[e.dst];
 temp = Reduce(temp, res);
 TempVertexProp[e.dst] = temp;
 }
} // Apply Phase updates ActiveVertexProp with TempVertexProp
for (i=0; i<ActiveVertex.size(); i++) {
 vid = ActiveVertexID[i];
 vprop = ActiveVertexProp[i];
 eptr = PtrToEdgeList[vid];
 for (e = Edges[eptr]; e.src == vid; e = Edges[++eptr]) {
 res = Process_Edge(e.weight, vprop);
 temp = TempVertexProp[e.dst];
 temp = Reduce(temp, res);
 TempVertexProp[e.dst] = temp;
 }
} // Apply Phase updates ActiveVertexProp with TempVertexProp

Processing Phase Block Diagram

- **Line 2-3**: Read Active SRC Property
- **Line 4**: Read Edge Pointer
- **Line 5**: Read Edges for given SRC
- **Line 6**: Process Edge
- **Line 7**: Read Temp. DST Property
- **Line 8**: Reduce
- **Line 9**: Write Temp. DST Property

Memory Access Units:
- Sequential Memory Access Unit (Green)
- Non-Sequential Memory Access Unit (Red)
- Custom Computation Unit (Brown)

Computation
- Custom Computation Unit (Brown)
Scenario: Let’s improve this abstract!

While others have studied graph analytics a lot, and there has been both software and hardware research, and some of it really improved performance, our work also studies graph analytics. Through the analysis our results show 12% improvement. Part of this comes from a CAM-based edge access scratchpad memory. We started from the vertex programming model but we adjusted it also so our work has both hardware and software aspects to it.

-> What writing changes do you suggest?

Note: some might be simple rewrites of the info that is there, and other might require asking me to provide more info where it is missing.
Resources

• Strongly Suggest: “The Science of Scientific Writing” by Gopen & Swan

• Very short – just a few pages, but gives great strategies to work on.