MASTERS VS. PH.D. WHICH ONE TO CHOOSE? HOW FAR TO GO?

Rita H. Wouhaybi, Intel Labs Puja Das, Apple Inc.

Revisiting Choices

Nearing the end of your first year in either a Ph.D. or MS program, the questions are:

- 1. Am I in the best program for me, based on a better understanding of
 - ☐ What I want (what I love / what I dislike) in the graduate school experience?
 - ☐ What I want as a future career path?
- 2. If not, then how do I get onto my preferred track?

Turn and Talk to your Neighbor

What is my plan: MS or PhD?

What I want (what I love / what I dislike) in the graduate school experience?

What I want as a future career path?

Who's in the Audience?

How many currently in master's programs?

- Course masters?
- Thesis masters?

How many in Ph.D. programs?

About Puja

Senior Research Scientist, Apple Inc. (2014-present)

- Apple Media Products Discovery Team
- Personalization & Large Scale Recommendation Systems

PhD, University of Minnesota (2014)

- Computer Science
- Thesis: Online Convex Optimization and its Application to Portfolio Selection

Internships

- IBM T.J. Watson Research Center
- eBay Inc.

MS, University of Iowa

Computer Science; Knowledge Discovery and Data mining

B.Tech, West Bengal University of Technology

Information Technology

Where Puja Works

Use the power of Machine Learning to help users discover content within a catalogue that is growing everyday

Course vs. Research Masters

Course Masters

- Breadth of knowledge may qualify you for marketing, project management, product management roles
- If that's what you want, take some business classes!
- Lack of major project may be a handicap for development roles

Research Masters

- Deep project may qualify you for more interesting development roles
- Much more attractive for a research lab position
- Thesis will help with publications

Program Comparison

	Course Based MS	Research MS	PhD
Educational Goals	Acquire knowledge via coursework	Acquire depth & project skills (thesis) Get a taste of research	Do original high- impact research Learn the skills for more research
Program	Courses are more deep Short time (job hunt)	Research is not as deep as Ph.D. Shorter commitment	Long process
	Networking opportunities	Less publications/impact	

Masters Career Opportunities

Types of Jobs

Operations and IT type jobs (non-tech industry)
Product or application development
Research support (Contribute to prototyping and publications)

Employers

Information Technology (IT) companies Companies in other industries Universities (Typically in support roles)

Ph.D. Career Opportunities

- Research or advanced development in industrial research labs
- Development leadership roles in industry
- Technical project management / leadership
- Academic research and teaching in a university as a professor

Experience of the Ph.D.

Lessons from the Roller Coaster

The ride is similar for most people

You are qualified for the ride. It's scary for everyone. You aren't alone. Share your experiences.

It takes externally applied energy for the uphills

Your advisor will be a key person (later session on this). Seek support from many sources (technical, emotional)

There are a lot of downhill sections

Frustration & doubt are *guaranteed*. Things can go wrong.

Momentum is important

Keep moving forward. No side trips to distract.

Technical Ladder Example

	Example Title	Contribution and Impact	Expertise
	·	Multiple product lines or technologies	Top tech leadership, impacts the industry
	Principal Engineer/Senior PE	Group product line or technology	Technical authority, impacts a business
	Senior Staff Engineer	Multiple Products	Project-wide expert, impacts a product
Ph.D.→		Product; Project Methods	Expert in area of contribution
M.S. →	Senior Engineer	Portion of a Product/Project	Working knowledge in one area of contribution
B.S. →	Engineer	Portion of a Product/Project	Working knowledge in one area of contribution

Industry Career: Research and Industry Impact

Research

Engage in scientific discovery, collaborate with peers, fund research (but typically later in career, possibly internal funding)

May involve university faculty and students

Develop creative thinking around technical solutions to problems

Technology Transfer

Contribute to company's products, client engagements, open source, intellectual property...

Demonstrate strong problem-solving skills Publish work and engage with academia

Service

Departmental (hiring committee)
Company-wide (promotion review board)
Professional

Expected to do all three well!

Academic Career: Research, Teaching, and Service

Research

Engage in scientific discovery, involve graduate and undergraduate students, fund research

Teaching

Active teaching, mentoring, advising

Service

Departmental, University, Professional (External)

Expected to do all three well!

Different Types of Colleges

Research universities: Ph.D. program - emphasize research – but teaching, service important

Colleges/universities: M.S. program- emphasize teaching – but research & service also important

Selective liberal arts colleges: B.S. program – emphasize teaching with research a close second, but service important

Teaching-oriented colleges: B.S. program — emphasize teaching & service but research can be expected

Academic Career Ladder

Professorial Ranks

Assistant: Tenure-track, 5-7 years

Associate: Usually with tenure

Full

Chaired Professor – endowed

Administrative Ranks

Department Chair, Dean, Provost, President

Instructor – teaching & service

Postdoctoral/Research Associate - research

What can I do now to prepare for a job in industry?

Complete a project(s)

Industry has shifted considerably to applied research

Get an internship(s)

Try out a corporate culture, job type, industry Find mentors/supporters of your career Publish your work with co-authors

Acquire key skills

Building your professional network, communication, negotiation, making yourself visible

Check your competition

Who is graduating soon in your field from other (top) schools.
Who works at this company

What can I do now to prepare for an academic job?

Research

Apprenticeship: learn from advisor, doing it, and others Grant writing Corporate connections (for funding, student job placement)

Teaching

Teaching experience, teaching assistantship, teach some even if don't have to

Professor-in-training programs, courses

Service

Organizing student organizations/support groups – Women in CS Working on department committees
Volunteering at conferences

CRA-W

Moving Between Research Lab and Academia

From University to Industry

Must build real systems

Establish visibility and knowledge in industry

From Industry to University

Must continue publishing

Establish visibility in research community

All Choices are Valid!

People move in all sorts of directions.

Start Ph.D. program – exit after Masters Masters – continue to Ph.D.

Success is wonderful, happiness is wonderful

Questions?

