Academia vs Industry: Choose Your Own Adventure

A.J. Brush, Microsoft Lisa Wu Wills, Duke University (not able to make it) Susan H. Rodger, Duke University

Thanks to previous presenters of this topic!

A.J. Brush

Education:

- University of Washington, Ph.D. 2002
- Williams College, BA 1996

Career

- Microsoft: Microsoft Research for 12 years, 4 years on Cortana product
- Research areas: HCI, Ubicomp,

Family and Fun

- Kids: Colin (19), Ryan (16)
- Hobbies: Exercise, Reading, Travel

Lisa Wu Wills

Education

- Columbia University, Ph.D. 2014
- University of Michigan Ann Arbor, M.S.
- University of Illinois Urbana-Champaign, B.S.

Career (reverse chronologically)

- Assistant Professor at Duke University, Postdoctoral Researcher @ UC Berkeley, Researcher @Intel Labs, back to school for Ph.D., Computer Architect @Intel (Xeon Phi, Knights product line)
- Research areas: Computer Architecture, Hardware Accelerators, Big Data Analytics, Healthcare

Fun

Travel, Art Museums, Performance Arts, Cooking, Beach

Susan Rodger

Education:

- Purdue University, MS '86, PhD '89
- North Carolina State Univ, BS '83

Career:

- Assistant Prof, Rensselaer Poly. Inst.
 - Tenure track, 1989-1994
- Professor of the Practice, Duke University
 - · Assist., Assoc. And Prof, since 1994
- Research Interests
 - Computer Science Education, Visual and Interactive Tools, Algorithms, Data Structures

Family and Fun

- Husband and two boys Erich (25), Markus (22)
- Hobbies: Baking, Running, Reading, Writing Wikipedia pages of Notable Women in Computing

A vs. B: So Simple, Right?

Academia

could be:

Professor at a

research-oriented school

teaching-oriented school

Research associate

Academic administration

Industry/Government/Lab

could be:

Engineer

Research Scientist

Research Manager

Technical or Managerial Leadership

Consulting

Start-up

All Choices are Valid!

- Do what you love
- If you don't love what you're doing, do something else
- A Ph.D. gives you that option
- Take ownership of what you do now and what you want to do next (your career is what you make of it)

Aspire to be **happy** - not 'stereotypical'

What is Important to You?

Widening Participation

Grab a piece of paper

What is your current plan?

Industry vs Government vs Academia vs Undecided?

Why?

How do you enjoy spending your time? What are your goals in a job?

Government Research Labs

Government Research Centers

DOE, DoD, NASA, NSF, DHS, NSA, NIST, NRC, FAA, ...

Why Work at a Government Lab?

- Opportunity to work on problems of national and international importance
- Chance to make a difference
- Work on cross-disciplinary teams with other scientists

Scientist Track

- Postdoc
 - Named small project internally funded
 - Regular working as a primary on an already funded project
- Research Scientist
 - Significant leadership roles in projects
 - Smaller projects on own
- Scientist
 - Leadership of projects and proposals
- Senior Scientist
 - Recognized international leadership in area of research
 - Leadership of large-scale projects

Applied Research Track

- Software Engineer
 - Developer on a research project
 - Leadership on development activities

Advancement metrics related to deliverables on projects

What Can You Do Now to Prepare?

- Internships at government laboratories
- Gain experience working on team projects
- Learn how to lead teams
- Build communication skills
- Learn about the various labs
 - types of work
 - qualifications required
 - citizenship requirements
 - funding models

Industry Research Careers

Industry Careers

Role	Visibility	Flexibility
Engineer	Low	High
Research scientist	Medium	High
Engr/Research Manager	Medium (all internal)	Medium
Corporate leadership	High	Low
Consulting	Low	Varies/Low
Government	Medium	High
Start-Up	Low (initially)	Low

The same role can vary significantly from company to company

Research/Engineer Ladder Examples

Titles vary across companies, also management track

Industrial Research Career Differences and similarities with academia

Research Agenda

- May depend on company's interests
- May be more applied than pure
- May change as company changes

Publishing Papers

- Typically encouraged extent varies
- Not always a requirement for success

Creating Patents

- Strongly encouraged
- A requirement for success

Research Funding

- Internal project approval
- External funding for joint
 University-Industry initiatives

Tech Transfer

- Critical goal for industrial researchers - Typically hard!
- Patents and open source contributions count

Participate in conferences

- Technical Program Committees
- Organization committees
- Standards Committees

Teaching/Students

- Interns and student mentorship
- University collaborations
- Ph.D./Masters student advising
- Teaching opportunities

How to prepare for an Industrial Research Career?

Similar to what you would do for an academic career

- Learn about the research process: identify important research problems, problem formulation, build solution artifacts, publish
- Go to conferences: learn to network
- Learn to "pitch" your research ideas, know your audience

Internships in industrial research and product organizations, start-ups

- Learn about the company you work for: leadership, products, services, growth areas, customers, market segments, competitors
- Interactions between business units and research

Evaluate what you really enjoy doing

- Tangible vs open ended problems
- Seeing your research realized into products and used by customers
- Publishing and Teaching/Mentoring

Academic Careers

Academic Career Ladder

Professorial Ranks

- Assistant: Tenure-track, 5-7 years
- Associate: Usually with tenure
- Full (no set time limit to achieve)
- Chaired Professor endowed

Administrative Ranks

Department Chair/Head, Dean, Provost, President

Teaching Faculty/Professor of the Practice

- Teaching load varies based on institutions
- Some institutions offer tenure-track for PoPs

Research Associate

Traditional Professor/Instructor Roles

Research universities (e.g., R1 institutions)

- Ph.D. program emphasize research, funding (also need to show reasonable teaching and service)
- Managing a research team Manage funding sources, manage students' projects, manage publications

Teaching-oriented colleges or PoP at R1

- B.S. program emphasize *teaching, service* Develop/Update curriculum

Public vs. Private

- Impacts funding structure
- Class sizes, student interactions, research group sizes

U.S. vs. Canada vs. Europe

Impacts funding structure

What can I do now to prepare for an academic job?

Research

- Apprenticeship: learn from advisor, write papers, collaborate
- Grant writing: Help out on proposals, read successful proposals
- Corporate connections (for funding, student job placement)

Teaching

- Guest lectures, teaching assistantships
- Education minor, teach a summer course on your own

Service

- Organizing student organizations/support groups Women in CS
- Working on department committees as student liaison
- Volunteering at conferences
- Join PC shadowing program when you are a senior grad student

Career Change

Moving Between Industry and Academia

From University to Industry/Government

- Must build real systems
- Establish visibility and knowledge in industry
- Look into sabbatical programs
- May be a technical interview

From Industry/Government to University

- Must continue publishing
- Establish visibility and reputation in research community
- Need to pass an academic interview (presentation, strong publication record)

This will be easier/harder at different times in your career.

Does What You're Thinking Align With What's Important to You?

- What you value most could change over time
- Absolutely no one is in your exact situation
- A PhD gives you options
- Be true to yourself and your values
- Don't be afraid to course correct at any point in your career

Questions

