#### GRACE HOPPER CELEBRATION THE WAY FORWARD

#### GRACE HOPPER CELEBRATION

#### THE WAY FORWARD

## ACM Award Winning Research in Data Science

Tiffany Barnes | North Carolina State University April Wang | University of Michigan

## go.ncsu.edu/ghc2023

## **Tiffany Barnes**

- Distinguished Professor of Computer Science
- North Carolina State University
- Researcher in educational data mining, Al in education, ed tech, human-computer interaction, serious games, computing education

Tiffany.Barnes@ncsu.edu https://www.linkedin.com/in/tiffany-barnes -826994/



GRACE HOPPER CELEBRATION

#### THE WAY FORWARD

The Q-Matrix Method: Mining student response data for knowledge

Educational Data Mining 2021 Test of Time Award

**Tiffany Barnes** 



#### GRACE HOPPER CELEBRATION

#### THE WAY FORWARD



Highlights from EDM 2022 Keynote:

#### **Compassionate, Data-Driven Tutors for Problem Solving and Persistence**

Tiffany Barnes GHC 2023



## **Compassion in context**

Striving to solve the most important problems in education – for students, teachers, parents, and society

Using Data Science and HCI to show concern and adapt the environment for learners and teachers

6



## **Goals of Q-matrix method**

#### Modify existing tools with simple intelligence

Diagnose and correct misconceptions Diagnosis tolerates careless errors & guesses

# Build a scientific approach to improving computer based education

Build in fault tolerance, robustness

Optimize for student performance

Optimize teaching strategies for effectiveness

## Adaptive Tutorial Flow





## **Expert Rule Spaces**



#### Expert analysis of arithmetic tasks into rules

Plotted student responses in 2D plane

Assumed nearby responses had similar knowledge

#### **Evolved into Q-matrix**

Relationship between questions & concepts

#### **Applications:**

Student assessment & remediation

Group performance measure

Finding new rules (student innovations)

## **Binary Q-matrix example**



| q1: | 2  | - | 7 = ? |
|-----|----|---|-------|
| q2: | 5  | + | 4 = ? |
| q3: | 10 | - | 6 = ? |
| q4: | -3 | - | 7 = ? |
| q5: | -5 | + | 1 = ? |

q1 q2 q3 q4 q5Con1001Con21001

Questions **q1-q5**: addition & subtraction tasks Concept **Con1** = First number is negative Concept **Con2** = 2nd number is negative and larger than the first number **q4** cannot be answered correctly without Con1 & Con2 **q1** needs only Con2; q5 needs only Con1 **q2** & **q3** use only "background knowledge"

#### **Knowledge & student model**



Goal: Mine to extract student concepts







Concept state – student understanding bit string

Concept state 01: understands Con2 but not Con1

Q-matrix: Concepts v. Questions

Each state has an "ideal response vector" computed from Q-matrix

## **Q-matrix model**



Assumes concepts underlie questions

For each concept state, compute "ideal response vector" (IDR)

Assign student to state with closest IDR

Redirect learning based on concept state

## **Ideal Responses**



q1q2q3q4q5Con10011Con210010

# Concept State Ideal Response 00 01100 01 11100 10 01101 11 11111





## **Q-matrix: gradient descent**

#### **Until convergence criterion met:**

- 1. Increment number of concepts
- 2. Fill q-matrix with random values in [0,1]
- 3. Compute IDRs, assign students to concept states & sum assoc. errors
- 4. Vary one value in q-matrix
- 5. Repeat step 3
- 6. Repeat steps 4-5 until error not improving
- 7. Repeat steps 2-6 to avoid local minima

#### Like k-means, incrementing k, but IDRs are centers





## What does it mean today?

The first paper to use data to create q-matrix

The paper also introduced a closed loop: it chose a new question for students based on the model

New papers do similar things: Learn what we can, from the data we have, with methods we understand

## **Approaches for compassion**



HCI to make content more usable, accessible, and compassionate

Co-design with, and respect rights and autonomy of students and teachers

Determine WHEN a student needs help and PROVIDE IT

19



## **Deep Thought for Logic** Provides data driven next-step hints and problem solving supports

| 1: $(S \rightarrow D) \lor I$ 2: $(\neg S \lor Q) \rightarrow Y$ 3: $\neg D$ 4: $\neg D \rightarrow \neg I$ | Rules         MP       MT         Modus Ponens       MT         Modus Ponens       Modus Tollens         Modus Ponens       Addtion         Modus Syllogism       Addtion         Mission       Modus Tollens         Mission       Mission         Mission       Mission | Think about the following rules for this problem: MP,DS,MT,ADD                              |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Problem Code: 3.4 C: Y Level: 3/7<br>Problem: 1/4                                                           | Com (i) ASSOC (i)     Associative     Dist (i)     Distributive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deep Thought Instructions                                                                   |
| Delete Node         Restart Current Problem           Change to Indirect Proof         Skip Current Problem | Goal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A Logic Proof Tutor<br>Version X.1<br>September 10, 2018<br>North Carolina State University |



#### **iSnap for Programming**

iSnap provides next-step hints and logs students' code edits [Price et al., 2017].





## **Productivity & HelpNeed**

22

# Assistance Dilemma in Problem Solving Videning Participation





#### **Step-level Productivity**

Overall State Quality



{Local, Global}

{Absolute, Relative}

**Progress of** 

**Current Step** 

## **State Quality**





Problem solving like mountain climbing

All peaks are solutions

Quality estimate 2 comparisons: Closest peak (Local) Highest peak (Global)





26









**Relative Progress** 













#### **Step Efficiency as Productivity Model**

State Quality {Local, Global}



**Progress** {Absolute, Relative}

Table 5.2: Defining Step Efficiency

| Quality-Progress | Efficiency Formula                             |
|------------------|------------------------------------------------|
| Global-Absolute  | $(GQV_{post-state} - GQV_{start-state}) \ge 0$ |
| Global-Relative  | $(GQV_{post-state} - GQV_{pre-state}) \ge 0$   |
| Local-Absolute   | $(LQV_{post-state} - LQV_{start-state}) \ge 0$ |
| Local-Relative   | $(LQV_{post-state} - LQV_{pre-state}) \ge 0$   |



## **HelpNeed Classification**



#### Figure 5.1 Classification of Step Behavior using efficiency and duration

|          | Classification | Behavior                                              | Description                                             |
|----------|----------------|-------------------------------------------------------|---------------------------------------------------------|
|          |                | Expert-like                                           | A quick efficient step; demonstrating mastery           |
|          | No HelpNeed    | Stratogia                                             | A long efficient step; taking longer on an              |
|          |                | Strategic                                             | expert-like step                                        |
|          |                | Opportunistic                                         | A single, quick inefficient step                        |
|          |                |                                                       | Maximum number of inefficient steps in a sequence       |
|          |                | For Off                                               | and/or multi-step duration for inefficient steps before |
| HelpNeed | Fai Oli        | intervention is desired                               |                                                         |
|          |                | In our tutor: consecutive quick but inefficient steps |                                                         |
|          |                | Futile                                                | A long inefficient step; taking too long on             |
|          |                |                                                       | a step that does not help make progress                 |



#### **HelpNeed Predictor**

Proactive Help fosters productive persistence among students with low prior knowledge

Can we *predict need (Far-Off/Futile) before* a step and convert it to productive persistence by proactively giving help?

## Experiment



- Participants: Undergraduate students in Fall 2019
- Conditions: Adaptive (N = 70) and Control (N = 53)
- **Procedure**:
  - Pre-test, Training, Post-test
  - During training, Adaptive receives proactive hints when need predicted





## Better Posttest Optimality and Time

#### Table 5.5 Pre- and Post-test performance

| Test     | Optimality |           | Time (min) |         |  |
|----------|------------|-----------|------------|---------|--|
|          | Adaptive   | Control   | Adaptive   | Control |  |
| Pretest  | .54 (.38)  | .60 (.27) | 39 (20)    | 34 (16) |  |
| Posttest | .71 (.27)  | .59 (.33) | 18 (12)    | 29 (17) |  |



## Classifying Training steps

| Step Behavior | Description                             | # Training Steps |          | n     |
|---------------|-----------------------------------------|------------------|----------|-------|
|               | Description                             | Adaptive         | Control  | P     |
| Expert        | Quick efficient steps                   | 61 (12)          | 65 (13)  | .10   |
| Strategic     | Long efficient steps                    | 25 (19)          | 21 (9)   | .17   |
| Opportunistic | Singular, quick, inefficient steps      | 5 (3)            | 7 (4)    | <.01* |
| Far Off       | Consecutive quick but inefficient steps | 16 (20)          | 25 (25)  | .02*  |
| Futile        | Long inefficient steps                  | 13 (12)          | 12 (19)  | .47   |
|               | Total Training Steps                    | 121 (38)         | 133 (39) | .10   |


# Hypotheses

H1: Students in the Adaptive condition will have better posttest optimality and time than those in the Control condition

H2: Students in the Adaptive condition will exhibit better training behaviors than Control, with

- (a) fewer HelpNeed steps
- (b) lower possible help avoidance, and higher possible help appropriateness (as measured using the HelpNeed classifier).



# **HelpNeed Contributions**

Novel data-driven productivity metrics:

**Quality and Progress** 

Adaptable to well-structured open-ended problem solving

Defined new ways to classify and improve student performance



# Using Data to Classify Progress and Struggle during programming

Students need proactive help during programming, too

Can we determine when to provide it automatically as in HelpNeed for Logic?



#### Dataset

Trace data from two non-majors programming assignments

Each trace contains timestamped student actions and code snapshots

Students had on-demand next-step hint support

| Assignment    | Traces | Actions | Avg Time on Task | Used Hints (>5) | Avg Grade |
|---------------|--------|---------|------------------|-----------------|-----------|
| Squiral       | 45     | 25160   | 29.6 mins        | 8 (2)           | 9.8/12    |
| Guessing Game | 50     | 22744   | 30.5 mins        | 9 (5)           | 11.7/12   |



#### Assignments





Guessing Game (Lab)





# **Struggle Definition**

A student is struggling if the student cannot make significant progress within typical time

Relative to the majority of students

i.e., 75th percentile [Teu18]



# **Identifying Struggling Moments**

Step 1: Measure student progress

Step 2: Determine significant progress

Step 3: Determine typical time for significant progress

Step 4: Identify struggling & progressing moments





- SourceCheck is a relative distance metric for program hint generation
- > Identify the closest correct solution to a code snapshot
  - One that needs fewest edits/lowest cost to accomplish
  - Similar to closest IDR in q-matrix method, Cost is like Error
- Assign Similarity Score to current snapshot (like Quality)
  - The inverse of the Cost to the closest correct solution
  - Increases when a student moves closer to a correct solution





> Plot the similarity scores for each snapshot against cumulative time





> 2 minutes of rapid progress





> Next six minutes: slower but steady progress





A reduction in progress for the next 4 minutes since the student restructured and deleted code





A 1.5 minute period of rapid progress and then slower 3 minutes progress then done!





## **Step 2: Determine Significant Progress**

Basically, subtract similarity scores between consecutive snapshots

Plot all the progress scores for all snapshots for all students in a histogram, ordering from least progress to most

All progress except the lowerst 25% is deemed "significant"





### **Step 2: Determine Significant Progress**

Significant Progress is any progress over 25th percentile





## **Step 3: Determine Typical Time**

- > Slice a trace into code chunks every time it achieves significant progress
- > Calculate duration of each code chunk using cumulative active time







## **Step 3: Determine Typical Time**

- > Slice a trace into code chunks every time it achieves significant progress
- > Calculate duration of each code chunk using cumulative active time





54 of 106

### **Step 3: Determine Typical Time**

- > Slice a trace into code chunks every time it achieves significant progress
- Calculate duration of each code chunk using cumulative active time



Many snapshots



# **Step 3: Determine Typical Time**

- > Typical time: 75th percentile of all significant code chunks
- > Any less chunk time is reasonable progress in reasonable time





# **Step 4: Determine Struggling Moments**

- > Struggling moment: a chunk where progress took longer than typical time
- Progressing moment is chunk where progress took <= typical time</p>

|                  | Traces | Sig.<br>Progress | Time for Sig.<br>Progress | # Code<br>Chunks | # (%) Struggling<br>Moments | # (%) Progressing<br>Moments |
|------------------|--------|------------------|---------------------------|------------------|-----------------------------|------------------------------|
| Squiral          | 45     | 1.25             | 105 secs                  | 648              | <mark>131</mark> (20.2%)    | <mark>517</mark> (79.8%)     |
| Guessing<br>Game | 50     | 1.5              | 85 secs                   | 1207             | <mark>269</mark> (22.3%)    | <mark>938</mark> (77.7%)     |



#### **Evaluation - Expert Rating**



#### **Experts rated a random sample**

- Struggling moments rating dataset: randomly sampled 20% of the struggling moments from each assignment
- Progressing moments rating dataset: the progressing moments before each struggling moment above

|               | Total Struggling<br>Moments | Struggling Rating<br>Dataset | Progressing Rating<br>Dataset |  |
|---------------|-----------------------------|------------------------------|-------------------------------|--|
| Squiral       | 131                         | 29                           | 29                            |  |
| Guessing Game | 269                         | 57                           | 54                            |  |



# **Expert Rating Setup**

Three experts rated if and when intervention is needed for each moment

Experts used the trace viewer to inspect student actions

|                                                                                                                                       | 2016-09-12 14:59:17 | 191808 | InputSlot.edited   | {"id":{"selector&quo |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|--------------------|----------------------|
| Motion     Control       Looke     Sensing       Sound     Operators       ✓     ✓ draggable       ✓     ✓ sortpts       ✓     Sounds | 2016-09-12 14:59:19 | 191824 | InputSlot.edited   | {"id":{"selector&quo |
| move 10 steps                                                                                                                         | 2016-09-12 14:59:27 | 191877 | IDE.changeCategory | "sensing"            |
| turn 2 15 degrees turn 5 15 degrees when spoor key pressed                                                                            | 2016-09-12 14:59:30 | 191891 | Block.created      | {"selector":"doAsk&q |
| point in direction (90)                                                                                                               | 2016-09-12 14:59:30 | 191892 | Block.grabbed      | {"id":{"selector&quo |
| 90 to x: () y: ()                                                                                                                     | 2016-09-12 14:59:31 | 191893 | Block.snapped      | {"id":{"selector&quo |
| gilde (1) secs to x: (0) y: (0)                                                                                                       | 2016-09-12 14:59:51 | 191987 | InputSlot.edited   | {"id":{"selector&quo |
| change x by 10                                                                                                                        | 2016-09-12 14:59:53 | 191988 | IDE.changeCategory | "operators"          |
| change y by 10<br>set y to 0 Stope                                                                                                    | 2016-09-12 14:59:55 | 192003 | IDE.changeCategory | "variables"          |
| If on edge, bounce                                                                                                                    | 2016-09-12 14:59:58 | 192028 | IDE.changeCategory | "sensing"            |
| x position<br>y position<br>direction                                                                                                 | 2016-09-12 15:00:00 | 192049 | IDE.changeCategory | "operators"          |
|                                                                                                                                       | 2016-09-12 15:00:00 | 192050 | IDE.changeCategory | "control"            |
|                                                                                                                                       | 2016-09-12 15:00:02 | 192051 | Block.created      | {"selector":"dolf&qu |
|                                                                                                                                       |                     |        |                    |                      |



# **Struggle/Progress Classification Worked!**

A data-driven method to classify both progressing and struggling moments

Classified moments matched experts 77-85% of the time

Has the potential to be generalized to domains with similar characteristics



#### **Common Causes of Disagreement**

- Disagreement in Struggling Moments
  - Solution Matching: similarity fluctuation when switching solution
  - Few Coding Actions: not enough actions to determine help-need

- Disagreement in Progressing Moments
  - Logic Errors: an issue that SourceCheck does not account for
  - Human Factors: human can infer information that is not possible for the algorithm



# **Papers with details**

 Barnes, T., 2005, July. The q-matrix method: Mining student response data for knowledge. In American association for artificial intelligence 2005 educational data mining workshop (pp. 1-8). AAAI Press, Pittsburgh, PA, USA.

 M Maniktala, C Cody, A Isvik, N Lytle, M Chi, T Barnes. (2020). <u>Extending the Hint Factory for the</u> <u>assistance dilemma: A novel, data-driven Help-Need Predictor for proactive problem-solving help.</u> *Journal of Educational Data Mining*, *12*(4), 24-65.

62

 Dong, Y., Marwan, S., Shabrina, P., Price, T., & Barnes, T. (2021). <u>Using Student Trace Logs To</u> <u>Determine Meaningful Progress and Struggle During Programming Problem Solving.</u> In *Proceedings* of the 14th International Conference on Educational Data Mining.

#### Thanks to these collaborators, and the National Science









Heidi Reichert

Benyamin Tabarsi





Mehak Maniktala



Yihuan Dong



Samiha Marwan















Ian Menezes

Veronica Catete

Thomas Price



Tiffany Barnes



NSF grants no. 845997, 2013502, 1432156, 1623470, 1837439



#### GRACE HOPPER CELEBRATION

#### THE WAY FORWARD

#### How Data Scientists Use Computational Notebooks for Real-Time Collaboration

April Wang | Anant Mittal | Chris Brooks | Steve Oney



# **April Wang**

- Incoming Assistant Professor at ETH Zurich
- Graduated from University of Michigan, School of Information
- Interested in human-computer interaction, educational technology, and data science
- Looking for motivated students to become part of my research lab!

april.wang@inf.ethz.ch https://aprilwang.me/





#### **The Story Behind Data Analysis**





#### **The Story Behind Data Analysis**





#### **House Price Prediction**

#### Import Library and Dataset

In [2]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read\_csv) from matplotlib import pyplot as plt import seaborn as sns

> df\_train = pd.read\_csv('https://researchdatafiles.s3.amazonaws.com/house-d df\_train.describe()

#### Out[2]:

|       | ld          | LotFrontage | LotArea       | OverallQual | OverallCond | YearBuilt   | YearRemo |
|-------|-------------|-------------|---------------|-------------|-------------|-------------|----------|
| count | 1460.000000 | 1201.000000 | 1460.000000   | 1460.000000 | 1460.000000 | 1460.000000 | 1460.0   |
| mean  | 730.500000  | 70.049958   | 10516.828082  | 6.099315    | 5.575342    | 1971.267808 | 1984.8   |
| std   | 421.610009  | 24.284752   | 9981.264932   | 1.382997    | 1.112799    | 30.202904   | 20.6     |
| min   | 1.000000    | 21.000000   | 1300.000000   | 1.000000    | 1.000000    | 1872.000000 | 1950.0   |
| 25%   | 365.750000  | 59.000000   | 7553.500000   | 5.000000    | 5.000000    | 1954.000000 | 1967.0   |
| 50%   | 730.500000  | 69.000000   | 9478.500000   | 6.000000    | 5.000000    | 1973.000000 | 1994.0   |
| 75%   | 1095.250000 | 80.000000   | 11601.500000  | 7.000000    | 6.000000    | 2000.000000 | 2004.0   |
| max   | 1460.000000 | 313.000000  | 215245.000000 | 10.000000   | 9.000000    | 2010.000000 | 2010.0   |



#### **Jupyter Notebook**

Jupyter notebooks consist of "cells" — typically small chunks of code or narrative text in the Markdown format.

Users can execute cells (typically, but not necessarily, from top to bottom) and observe their outputs.

#### Histogram for SalePrice



#### Writing and Sharing Computational Notebooks in Various Contexts

Data Science Education Kross and Guo, CHI 19

Open Science Randles et al., JCDL 17

Professional Data Analytics Kery et al., CHI 18





#### **From Sharing to Synchronous Editing**



Deepnote



#### **Issues with Synchronous Editing**

- Reluctant to write together when collaboratively constructing a document
- Social embarrassment to be watched by others when typing

~ Wang et al. CSCW'17





#### **Issues with Synchronous Editing**





#### **Collaborative Writing**

Wang et al. CSCW'17 D'Angelo et al. CSCW'18

#### **Collaborative Programming**

Goldman et al. UIST'11 Oney et al. CSCW'18
## What about collaborative data science?

data science ≠ writing + coding





- RQ1 What tools and strategies do data scientists currently use for collaboration?
- RQ2 Compared to working on individual notebooks in a collaborative setting, how does synchronous notebook editing change the way data scientists collaborate in computational notebooks?
- RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?



RQ1 What tools and strategies do data scientists currently use for collaboration?

- RQ2 Compared to working on individual notebooks in a collaborative setting, how does synchronous notebook editing change the way data scientists collaborate in computational notebooks?
- RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?

Study 2 Observational Study





cination

What tools and strategies do data scientists currently RQ1 use for collaboration?

### **Traditional Collaboration Setting**

Working on individual Jupyter notebooks

## **Emerging Collaboration Setting**

Working on notebooks with synchronous editing



RQ2 Compared to working on individual notebooks in a collaborative setting, how does synchronous notebook editing change the way data scientists collaborate in computational notebooks?

RQ3 What challenges, if any, do data scientists perceive in synchronous notebook editing?

Study 2 Observational Study



## **Participants**

- 24 participants (12 from the survey)
- Randomly assigned to pairs
- Work collaboratively on a predictive modeling problem remotely





## **Study Setup**

#### **Non-Shared Condition**

#### **Shared Condition**

Participants worked on individual notebooks

- Exchange the notebook file
- Set up a git repository
- Send code snippets through other tools if necessary

Synchronous editing was supported.

Share notebook edits and actions (e.g.,

moving cursor, adding cells) in real-time

- Execute code on a single interpreter
- Update output and runtime variables among collaborators





### Task

- Predict house sale prices using 80 features (e.g., lot size, year built)
- Additional incentives for the group with the lowest error score
- Submit prediction results as well as one Jupyter notebook report
- Choose from text-messaging (Slack) or video-conferencing (Google Hangouts) for communication







| Collaboration Style      | GID | Definition                                                                                                                              |
|--------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| Single Authoring         |     | One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much. |
| Pair Authoring           |     |                                                                                                                                         |
| Divide and<br>Conquer    |     |                                                                                                                                         |
| Competitive<br>Authoring |     |                                                                                                                                         |



| Collaboration Style      | GID | Definition                                                                                                                              |
|--------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| Single Authoring         |     | One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much. |
| Pair Authoring           |     | One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results. |
| Divide and<br>Conquer    |     |                                                                                                                                         |
| Competitive<br>Authoring |     |                                                                                                                                         |



| Collaboration Style      | GID | Definition                                                                                                                              |  |
|--------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Single Authoring         |     | One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much. |  |
| Pair Authoring           |     | One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results. |  |
| Divide and<br>Conquer    |     | Members divided the task into subgoals and explored the subgoals independently.                                                         |  |
| Competitive<br>Authoring |     |                                                                                                                                         |  |



| Collaboration Style      | GID | Definition                                                                                                                              |  |
|--------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| Single Authoring         |     | One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much. |  |
| Pair Authoring           |     | One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results. |  |
| Divide and<br>Conquer    |     | Members divided the task into subgoals and explored the subgoals independently.                                                         |  |
| Competitive<br>Authoring |     | Team members wrote the code for the same purpose and reached the consensus to use the code by whomever finished first.                  |  |



| Collaboration Style      | GID                   | Definition                                                                                                                              |
|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Single Authoring         | S2, S5                | One team member contributed the majority of ideas and did the majority of the implementation, while the others did not contribute much. |
| Pair Authoring           | S6                    | One team member did the majority of implementation while the others contributed ideas, engaged in discussions and reviewed the results. |
| Divide and<br>Conquer    | N2, N5, S1, S3,<br>S4 | Members divided the task into subgoals and explored the subgoals independently.                                                         |
| Competitive<br>Authoring | N1, N3, N4, N6        | Team members wrote the code for the same purpose and reached the consensus to use the code by whomever finished first.                  |





## **Communication Channels**

|                     | <b>Non-Shared Condition</b> | Shared Condition                                 |
|---------------------|-----------------------------|--------------------------------------------------|
| Choices of<br>Tools | Text Messaging (6/6)        | Text Messaging (3/6)<br>Video Conferencing (3/6) |

Participants in the non-shared condition send files, code snippets, and output more often.

→ Working in the shared notebook may reduce the communication costs by establishing a shared context.





## **Final Submissions**

- → Groups in the shared condition achieved a better prediction result.
  - Non-Shared Condition
  - Shared Condition

#### **Error Score**



→ Groups in the shared condition explored more alternative models.

#### Number of Alternative Models\*





## **Work Across Phases**



Participants in the shared condition switched more frequently (p<0.001).

→ Working on the same notebook provides collaborators with convenience to branch through tasks



## **Benefits of Synchronous Editing in Notebook**

- → Reducing communication costs
- → Flexibility to branch through tasks
- → Enabling explorations of more alternative models
- → Leading to a better prediction result

Study 2 Observational Study



## **Challenges of Synchronous Editing**







## **Challenges of Synchronous Editing**

1. Interference with each other



"... When using Jupyter Notebook together, it's hard to keep track of variable names. Everyone might use a different name and may cause issues. For example, my teammate used train\_df as name, and later changed it to something else, but I wanted him to keep using the original name..." (P2 from S1)



## **Challenges of Synchronous Editing**

2. Lack of strategic coordination

Why competitive authoring happens in the non-shared condition?



Why single authoring happens in the shared condition?



"... I feel I am not splitting work well enough. I was thinking about how to get the work done and just tried the ideas on myself...." (P11 from S2)



## **Challenges of Synchronous Editing**

### 3. Contextual Chatting

P14 and P15 were looking at the scatterplots of independent variables together.

2:18 PM In my opinion there are outliers in all of our features there are 1 or 2 points that outlies 2:19 PM which ones?

P14 downloaded the graph, opened MS Paint, annotated the graph and sent it back to P15.



## How Data Scientists Use Computational Notebooks for Real-Time Collaboration



What tools and strategies do data scientists currently use for collaboration? Study 1 - Formative Survey on Collaborative Data Science Traditional Collaboration Setting + Emerging Collaboration Setting

How does synchronous notebook editing change the way data scientists collaborate? What challenges do data scientists perceive in synchronous notebook editing? Study 2 - Observational Study on Collaborative Data Science Having synchronous editing is great for collaborative data science, but not perfect!

Presenter: April Wang | <u>april.wang@inf.ethz.ch</u> Co-authors: Anant Mittal, Chris Brooks, Steve Oney



## **Programming, Education, and Computer-Human Interaction Lab (PEACH Lab)**



https://aprilwang.me/#/team



## What Is CRA-WP? Individual & Group Research Mentoring



- Undergrads Undergraduate Research Experiences (DREU), Scholarships for Women Studying Information Security (SWSIS)
- *Grad Students* CSGrad4US Fellowships, Grad Cohort for IDEALS, Grad Cohort for Women, Mentoring Tracks at GHC, and Scholarships for Women Studying Information Security (SWSIS)
- Academics/PhD Researchers Career Mentoring Workshop (CMW), CSGrad4US Mentoring Program, and Mentoring Tracks at GHC





## **Insert Additional Slides Below**

## **QUESTIONS?**

# **THANK YOU**





CRA-Widening Participation

@computingresearch

