2002-2003 Taulbee Survey

Undergraduate Enrollments Drop; Department Growth Expectations Moderate

By Stuart Zweben and William Aspray

This article and the accompanying figures and tables present the results of the 33rd annual CRA Taulbee Survey ${ }^{1}$ of Ph.D.-granting departments of computer science (CS) and computer engineering (CE) in the United States and Canada. This survey is conducted annually by the Computing Research Association to document trends in student enrollment, employment of graduates, and faculty salaries.

Information was gathered during the fall of 2003. Responses received by December 10, 2003 are included in the analysis. The periods the data cover vary from table to table. Degree production (Ph.D., Master's, and Baehelor's) and total Ph . B . enrollments refer to the previous reademic year (2002-2003). Data for new students in all eategories and total enrollments for Master's and Bachelor's degrees refer to the eur rent aeademic yeai (2003-2004). Projected student production and information on faculty salaries and demographics also refer to the current academic year. Faculty salaries are those effective January 1, 2004
The data were collected from Ph.D.-granting departments only. A total of 225 departments were surveyed, the same number as last year. As shown in Figure 1, 177 departments returned their survey forms, for a response rate of 79 percent (compared to 80 percent last year) The return rate of 7 out of 29 (24%) for Computer Engineering (CE) programs is very low, as has been the case for several years (see below). We attribute this low response to two factors: 1) many CE programs are part of an ECE department, and they do not keep separate statistics for CE vs. EE; and 2) many of these departments are not aware of the Taulbee Survey or its importance. The response rate for US CS departments (151 of 169 , or 89%) was very good, while the 70% response rate for Canadian programs was moderately good although not as good as in the past several years.

The set of departments responding varies slightly from year to year, even when the total numbers are about the same; thus, we must approach any trend analysis with caution. We must be especially
cautious in using the data about CE departments because of the low response rate. However, we have reported CE departments separately because there are some significant differences between CS and CE departments.

The survey form itself is modified slightly each year to ensure a high rate of return (e.g., by simplifying and clarifying), while continuing to capture the data necessary to understand trends in the discipline and also reflect changing concerns of the computing research community. This year, preliminary survey results about faculty salaries were reported in December 2003 only to respondents. The CRA Board views this, and the release of this final report to respondents in early March 2004, as benefits of participation in the survey. We intend to continue this practice in future years.

This year we also included several new questions from the former Departmental Profiles Survey (see the section entitled "Additional Departmental Profiles Analysis"). We are especially pleased that the increased size of this year's survey did not have a detrimental effect on the response rate. We thank all respondents who completed this year's questionnaire. Departments that participated are listed at the end of this article.

Ph.D. Degree Production and Enrollments (Tables 1-8)
As shown in Table 1, a total of 877 Ph.D. degrees were awarded in 2003 by the 177 responding departments. This is an increase of 3% over last year, but still represents, as Figure 2 indicates, the second lowest total national Ph.D. production since 1989. Most likely this number is still reflecting the high-tech boom of the late 1990s when start-up companies presented an extremely attractive employment option for computer scientists.
The prediction from last year's survey that 1,224 Ph.D. degrees would be awarded in 2003 was, as usual, overly optimistic, with an "optimism" ratio, defined as the actual over the predicted, being 0.72 . Given next year's prediction of 1,350

Figure 1. Number of Respondents to the Taulbee Survey				
Year	US CS Depts.	US CE Depts.	Canadian	Total
1995	$110 / 133(83 \%)$	$9 / 13(69 \%)$	$11 / 16(69 \%)$	$130 / 162(80 \%)$
1996	$98 / 131(75 \%)$	$8 / 13(62 \%)$	$9 / 16(56 \%)$	$115 / 160(72 \%)$
1997	$111 / 133(83 \%)$	$6 / 13(46 \%)$	$13 / 17(76 \%)$	$130 / 163(80 \%)$
1998	$122 / 145(84 \%)$	$7 / 19(37 \%)$	$12 / 18(67 \%)$	$141 / 182(77 \%)$
1999	$132 / 156(85 \%)$	$5 / 24(21 \%)$	$19 / 23(83 \%)$	$156 / 203(77 \%)$
2000	$148 / 163(91 \%)$	$6 / 28(21 \%)$	$19 / 23(83 \%)$	$173 / 214(81 \%)$
2001	$142 / 164(87 \%)$	$8 / 28(29 \%)$	$23 / 23(100 \%)$	$173 / 215(80 \%)$
2002	$150 / 170(88 \%)$	$10 / 28(36 \%)$	$22 / 27(82 \%)$	$182 / 225(80 \%)$
2003	$151 / 169(89 \%)$	$7 / 29(24 \%)$	$19 / 27(70 \%)$	$177 / 225(79 \%)$

graduates (Table 1), we believe the actual number will be between 900 and 1,000 .

Most of the other numbers indicate that doctoral students are staying in school and progressing towards the degree. The number entering Ph.D. programs (Table 5) decreased from 3,286 to 3,131 (5\%), with this decrease entirely attributable to Canadian and CE respondents. The US CS numbers are flat. However, the number who passed qualifiers (Table 1) increased from 1,375 to $1,545(12 \%)$. On a per-department basis, the number passing qualifiers
has risen from 6.5 to $8.7(33 \%)$ in three years. The number who passed thesis proposal exams (Table 1) stayed almost flat, changing from 884 to 881. Total Ph.D. enrollment (Table 6) increased from 10,021 to $12,007(20 \%)$. It seems that the slow turn-around of the economy, and of the dot-com economy in particular, has attracted more people to graduate school in recent years, and more of them appear to be moving past at least the qualifier stage of the Ph.D. program.

Taulbee Continued on Page 6

Table 1. Ph.D. Production by Type of Department and Rank

Department, Rank	Ph.D.s Produced	Avg. per Dept.	Ph.D.s Next Year	Avg. per Dept.	Passed Qualifier	Avg. per Dept.	Passed Thesis Exam	Avg. per Dept
US CS 1-12	167	13.9	217	18.1	261	21.8	238	19.8
US CS 13-24	128	10.7	159	13.3	190	15.8	104	8.7
US CS 25-36	93	7.8	163	13.6	197	16.4	82	6.8
US CS Other	388	3.4	578	5.0	722	6.3	368	3.2
Canadian	72	3.8	126	6.6	133	7.0	79	4.2
US CE	29	4.1	107	15.3	42	6.0	10	1.4
Total	877	5.0	1,350	7.6	1,545	8.7	881	5.0

2002-2003 Taulbee Survey

Taulbee from Page 5
Figure 3 shows a longer-term
trend of the number of CS Ph.D.
graduates, normalized by the number
of departments responding to the
Taulbee Survey. This graph also
shows the number of new students
entering Ph.D. programs and the
number of students who passed quali-
fiers. These also are normalized for
the number of departments report-
ing. The graph offsets the qualifier

data by one year from the data for new students, and offsets the graduation data by five years from the data for new students, to approximate the lag between student entrance into the pipeline, and the qualifier and exit time frame for the same cohort. The figure suggests that, unless a larger fraction of those passing qualifiers do not complete the program, significant increases in Ph.D. production are only a few years away.

	CS		CE		CS\&CE	
Male	660	83.2\%	57	86.4\%	717	83.5\%
Female	133	16.8\%	9	13.6\%	142	16.5\%
Total have Gender						
Data for	793		66		859	
Unknown	18		0		18	
Total	811		66		877	
Table 3. Ethnicity of Ph.D. Recipients by Type of Degree						
	CS		CE		CS\&CE	
Nonresident Alien	314	41.9\%	33	52.4\%	347	42.7\%
African-American, Non-Hispanic	10	1.3\%	1	1.6\%	11	1.4\%
Native American/ Alaskan Native	1	0.1\%	1	1.6\%	2	0.2\%
Asian/Pacific Islander	105	14.0\%	9	14.3\%	114	14.0\%
Hispanic	16	2.1\%	1	1.6\%	17	2.1\%
White, Non-Hispanic	281	37.5\%	16	25.4\%	297	36.5\%
Other/Not Listed	23	3.1\%	2	3.2\%	25	3.1\%
Total have Ethnicity Data for	750		63		813	
Ethnicity/Residency Unknown	61		3		64	
Total	811		66		877	

Table 4 shows employment for new Ph.D. recipients. Of those who reported employment domestically, 63% took academic employment (compared to 53% last year and 43% the year before). Most of these academic positions were in Ph.D.-granting departments, but 31 were in other CS/CE departments. This represents a considerable increase from the 9 reported last year as having gone to non-Ph.D.-granting CS/CE departments, but still likely falls considerably short of meeting the needs of those departments. There has also been a slight increase (from 83 to 89) in the number of postdoctoral positions (up from 56 two years ago). Figure 4 shows the trend of employment of new Ph.D.s to academia and industry, and the proportion of those going to academia who took positions other than in Ph.D-granting CS/CE departments. After many years of a decided preference for industry jobs over academic jobs, the trend during the most recent two years is striking, and indicative of economic conditions in industry. This has been good for Ph.D-granting CS/CE departments.

Table 4 also indicates increases in the proportion of new CS/CE Ph.D.s in the programming languages/compilers, OS/networks, software engineering, and graphics/ HCI areas, while the $\mathrm{AI} /$ robotics, theory/algorithms, and database/information systems areas experienced a decreased proportion of Ph.D.s. Multi-year trends are less clear, though there appears to have been an increased production in the graphics/ HCI and the numerical/scientific computing areas during the past five years.

Most statistics on gender and ethnicity for Ph.D. students (Tables 2, 3, 7,8) show little change from last year or, indeed, the last several years. White and nonresident-alien men continue to account for a very large fraction of our Ph.D. production and enrollments. Women represented 20% of enrollments, 17% of graduates. All other underrepresented groups make up a very small minority. As Figure 5 illustrates, we see a second year of slight decrease in the proportion of enrolled Ph.D. students who are nonresident aliens. The cause of this trend is unclear. It could be an increased interest in Ph.D.

										$\begin{aligned} & \frac{5}{3} \\ & 0 \\ & \frac{1}{c} \\ & 5 \\ & 5 \\ & \text { 깋 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$$		
New Ph.D.s in Ph.D.Granting Depts.													
Tenure-track	29	32	9	17	48	18	33	22	29	20	257	34.2\%	
Researcher	17	2	4	1	15	3	4	8	3	4	61	8.1\%	
Postdoc	23	2	6	7	12	4	12	11	6	6	89	11.9\%	
Teaching Faculty	2	0	1	5	4	1	1	1	3	9	27	3.6\%	
												57.8\%	Total
New Ph.D.s, Other Categories													
Other CS/CE Dept.	5	1	4	1	2	3	4	8	2	1	31	4.1\%	
Non-CS/CE Dept.	1	0	0	0	0	2	1	1	0	2	7	0.9\%	
Industry	37	17	10	17	40	14	10	25	13	33	216	28.8\%	
Government	2	0	4	2	3	0	0	1	1	2	15	2.0\%	
Self-Employed	1	0	0	0	1	2	0	1	2	2	9	1.2\%	
Employed Abroad	3	6	1	2	3	7	0	6	2	1	31	4.1\%	
Unemployed	3	0	0	0	0	0	0	3	1	1	8	$\begin{array}{r} 1.1 \% \\ 42.2 \% \end{array}$	Total
Total have													
Employment Data for	123	60	39	52	128	54	65	87	62	81	751	100.0\%	
Unknown	10	5	2	4	5	7	3	7	7	76	126		
Total	133	65	41	56	133	61	68	94	69	157	877		

Page 6

2002-2003 Taulbee Survey

programs by domestic students, difficulties with visas for foreign students, or a perceived hostile environment that makes the United States seem less attractive to foreign students. Even with this two-year decline, the current proportion of non-resident aliens is the third highest in the past ten years. However, in 2003, the Educational Testing Service reports significant decreases in the number of students taking the GRE exam from countries that historically have been large feeders of North
American graduate programs in
CS/CE (especially China and India). The effect of this phenomenon on next year's Taulbee data bears watching.

Master's and Bachelor's
 Degree Production and Enrollments

(Tables 9-16)

The statistics on Master's and Bachelor's degrees awarded show mixed trends. Master's degrees were awarded to 9,141 students, an increase of 15% (following a decrease of 4 percent the year before). This may be a byproduct of the increased enrollment trends in Ph.D. programs, since in many schools students obtain the M.S. on the way to the Ph.D. Actual Master's degrees awarded exceeded last year's projections by 17%. This year's expected Master's production (Table 12) exceeds the projection from last year's survey by 4 percent, but if met this still would represent a decrease of more than a 10% from last year's actual production. Bachelor's degrees numbered 19,990 , a decrease of 3% (following an increase of 21 percent the year before). Most of this decrease came from CE programs; CS production was down less than 2%, perhaps reflecting the residuals of the high growth in undergraduate program enrollment of the late 1990s. Actual Bachelor's production was only about 1% less than projected last year. Projected Bachelor's production for this year shows a decrease from last year's projections of 7 percent (see Figure 6).

As shown in Figure 7, the number of new undergraduate majors dropped significantly from 23,033 to 17,706 (23\%). For the previous three years, the number of new undergraduate students was approximately constant, whereas during the five years before that the number of new undergraduate students more than doubled. One major reason for this
striking new trend is that the decline in the technology industry and the moving of jobs offshore are making computer science and engineering less alluring to new undergraduates. In addition, some programs have restricted admission to a subset of those desiring the computer science and engineering major, either by setting numerical limits or increasing the standards for admission. The selectivity of these programs has an impact on the number of students who want to compete for positions in these programs. Lastly, the introduction of new undergraduate programs in the IT field has created alternatives to the traditional CS and CE majors, possibly siphoning students who previously would have selected CS/CE programs. In any case, it is quite clear that the period of explosive growth in enrollments in Bachelor's programs is over.
In all other numbers, we again see mixed trends in both Bachelor's and Master's programs. New Master's students (Table 13) decreased by 8% after having decreased by 3% the previous year. This is further evidence of the effect of the dot-com crash, as fewer students seek degree programs designed mainly to prepare them for industry employment. Total enrollments in Bachelor's programs (Table 16) dropped by 19% (having increased in US CS departments by 4% to 5% and overall by 11% the previous year) and enrollments in Master's programs (Table 15) dropped by 4\% (having increased by 21% the previous year).
Most demographics regarding gender and ethnicity for Bachelor's and Master's students show stability when compared with last year's results. The proportion of Master's degree recipients who are nonresident aliens (55.8%) is about the same as the previous year (Table 10).
Faculty Demographics (Tables 17-23)
Over the past year, the total number of faculty increased by 6 percent to a total of 5,831 . Increases were shown in every category: tenuretrack, researcher, postdoc, and teaching faculty.

Ph.D. production shows only 434 graduates taking faculty positions at CS/CE Ph.D-granting departments (Table 4). Tables 19 and 20 indicate that a total of 607 persons were hired during the past year. Thus, more than 70% of the faculty hires appear to have been new Ph.D.s, with the

rest a combination of faculty who changed academic position, persons joining academia from government and industry, new Ph.D.s from disciplines outside of CS/CE, and nonPh.D. holders (e.g., taking a teaching faculty appointment).

This year's observed faculty growth to 5,831 was very close to the prediction of 5,881 from last year's survey. Planned growth for this year is only 2% and only 5% for the following year. Departmental expectations appear to be much more modest and realistic than in previous years. This may reflect more firm numbers of open positions than in the days when several departments were reported to have an open-ended
number of positions, and also may reflect an increased supply of candidates.

Table 23 on faculty "losses" shows that the same number of people (89 , which is less than 2% of all faculty) actually left academia through death, retirement, or taking nonacademic positions this year and last year. However, this year, the amount of "churn," the number of professors moving from one academic position to another, decreased from 108 to 74 . Thus we have further evidence that the faculty "retention problem" that was so much discussed over the past few years seems to have solved itself.

Taulbee Continued on Page 8

Table 5. New Ph.D. Students in Fall 2003 by Department Type and Rank

Department, Rank	CS				CE				CS\&CE	
	New Admit	$\begin{gathered} \text { MS } \\ \text { to } \\ \text { Ph.D. } \end{gathered}$	Total	Avg. per Dept	New Admit	$\begin{gathered} \text { MS } \\ \text { to } \\ \text { Ph.D. } \end{gathered}$	Total	Avg. per Dept.	Total	Avg. per Dept
US CS 1-12	437	28	465	38.8	0	0	0	0.0	465	38.8
US CS 13-24	321	43	364	30.3	6	0	6	0.5	370	30.8
US CS 25-36	274	29	303	25.3	0	0	0	0.0	303	25.3
US CS Other	1,161	347	1,508	13.1	139	27	166	1.4	1,674	14.6
Canadian	169	24	193	10.2	0	0	0	0.0	193	10.2
US CE	0	0	0	0.0	126	0	126	18.0	126	18.0
Total	2,362	471	2,833	16.0	271	27	298	1.7	3,131	17.7

2002-2003 Taulbee Survey

Department, Rank	CS		CE		CS\&CE	
US CS 1-12	1,972	18.4\%	0	0.0\%	1,972	16.4\%
US CS 13-24	1,544	14.4\%	14	1.1\%	1,558	13.0\%
US CS 25-36	1,348	12.6\%	0	0.0\%	1,348	11.2\%
US CS Other	5,160	48.1\%	502	39.0\%	5,662	47.2\%
Canadian	694	6.5\%	0	0.0\%	694	5.8\%
US CE	1	0.0\%	772	59.9\%	773	6.4\%
Total	10,719		1,288		12,007	

	CS		CE		CS\&CE	
Male	8,362	79.5\%	1,087	84.8\%	9,449	80.1\%
Female	2,155	20.5\%	195	15.2\%	2,350	19.9\%
Total have						
Gender Data for	10,517		1,282		11,799	
Unknown	202		6		208	
Total	10,719		1,288		12,007	

Table 8. Ph.D. Program Total Enrollment by Ethnicity						
CS		CE		CS\&CE		
Nonresident Alien	5,294	54.0%	481	38.5%	5,775	52.2%
African-American,						
Non-Hispanic	152	1.5%	35	2.8%	187	1.7%
Native American/						
Alaskan Native	19	0.2%	2	0.2%	21	0.2%
Asian/Pacific Islander	1,061	10.8%	413	33.1%	1,474	13.3%
Hispanic	112	1.1%	22	1.8%	134	1.2%
White, Non-Hispanic	2,959	30.2%	292	23.4%	3,251	29.4%
Other/Not Listed	213	2.2%	4	0.3%	217	2.0%
Total have						
Ethnicity Data for	$\mathbf{9 , 8 1 0}$		$\mathbf{1 , 2 4 9}$		$\mathbf{1 1 , 0 5 9}$	
Ethnicity/Residency						
Unknown	909		39		948	
Total	$\mathbf{1 0 , 7 1 9}$	$\mathbf{1 , 2 8 8}$		$\mathbf{1 2 , 0 0 7}$		

Taulbee from Page 7
The demographic data for faculty (Tables 19-22) show very small changes. Overall, the percentage of newly hired women faculty increased from 18% to 19%. The gender split of new faculty (81% male, 19% female) remains close to the split for new Ph.D. recipients (Table 2). While there are more newly hired men in tenure-track (82%) and research (86%) positions, these categories are slightly less male-dominated than they were the year before. The percentage of newly hired teaching faculty who are women dropped from 26% to 22%. These changes had no marked effect on the percentages of current faculty of each gender

It is interesting to compare the ethnicity data for new faculty (Table 20) with that of Ph.D. recipients (Table 3). Forty-nine percent of the newly hired tenure-track faculty in Ph.D.-granting departments and 72\% of the newly hired teaching faculty are white, non-Hispanic, even though only 37 percent of the Ph.D. recipients are in this category. By contrast, only 23 percent of the new faculty are nonresident aliens, whereas 43 percent of the degree recipients are in that category. Some new faculty could have become residents after receiving their Ph.D. degrees, but it seems clear that proportionately fewer foreign students take positions, especially teaching positions, at universities in North America.

Research Expenditures and Graduate Student Support (Tables 24-26)

Table 24 shows the department's total expenditure (including indirect costs or "overhead" as stated on project budgets) from external sources of support. As was true last year, the higher the ranking, the more external funding per capita, where capitation is computed relative to the number of tenured and tenure-track faculty members. Canadian levels are shown in Canadian dollars. The median per capita amount of support for schools in the 1-36 bands compared to the median reported in last year's survey grew in the 5% to 10% range, while in the lower ranks, the median actually dropped by 3%. Canadian departments show a lower level of expenditures from external sources than every US ranking band; this stems, no doubt, from differences in the way that research is funded in Canada. It is difficult to draw meaning for the numbers for computer engineering because of the small number of departments reporting.

Table 25 shows the number of graduate students supported as fulltime students as of fall 2003, further categorized as teaching assistants, research assistants, fellows, or computer systems supporters, and split between those on institutional vs. external funds. The higher the ranking of the department, the greater the proportion of graduate students who are supported on external funds (typically as research assistants and fully supported, externally funded fellows). Canadian departments are more likely than US departments to

	Bachelor's						Master's					
	CS		CE		CS\&CE		CS		CE		CS\&CE	
Male	12,606	80.6\%	2,892	88.6\%	15,498	82.0\%	5,912	73.6\%	800	80.6\%	6,712	74.4\%
Female	3,041	19.4\%	372	11.4\%	3,413	18.0\%	2,119	26.4\%	193	19.4\%	2,312	25.6\%
Total have												
Gender Data for	15,647		3,264		18,911		8,031		993		9,024	
Unknown	986		93		1,079		117		0		117	
Total	16,633		3,357		19,990		8,148		993		9,141	

	Bachelor's						Master's					
	CS		CE		CS\&CE		CS		CE		CS\&CE	
Nonresident Aliens	1,218	9.8\%	199	6.3\%	1,417	9.1\%	4,096	57.2\%	413	45.1\%	4,509	55.8\%
African-American, Non-Hispanic	399	3.2\%	194	6.1\%	593	3.8\%	95	1.3\%	40	4.4\%	135	1.7\%
Native American/ Alaskan Native	41	0.3\%	13	0.4\%	54	0.3\%	13	0.2\%	1	0.1\%	14	0.2\%
Asian/Pacific Islander	3,053	24.5\%	747	23.5\%	3,800	24.3\%	1,072	15.0\%	168	18.4\%	1,240	15.4\%
Hispanic	456	3.7\%	136	4.3\%	592	3.8\%	86	1.2\%	10	1.1\%	96	1.2\%
White, Non-Hispanic	6,934	55.6\%	1,759	55.4\%	8,693	55.6\%	1,678	23.4\%	277	30.3\%	1,955	24.2\%
Other/Not Listed	362	2.9\%	127	4.0\%	489	3.1\%	123	1.7\%	6	0.7\%	129	1.6\%
Total have Ethnicity Data for	12,463		3,175		15,638		7,163		915		8,078	
Ethnicity/ Residency Unknown	4,170		182		4,352		985		78		1,063	
Total	16,633		3,357		19,990		8,148		993		9,141	

Page 8

2002-2003 Taulbee Survey

Department, Rank	CS		CE		CS\&CE	
US CS 1-12	1,889	11.6\%	218	8.4\%	2,107	11.2\%
US CS 13-24	1,461	9.0\%	376	14.5\%	1,837	9.7\%
US CS 25-36	1,775	10.9\%	83	3.2\%	1,858	9.9\%
US CS Other	7,889	48.5\%	1,444	55.6\%	9,333	50.2\%
Canadian	3,246	20.0\%	5	0.2\%	3,251	17.2\%
US CE	0	0.0\%	470	18.1\%	470	1.8\%
Total	16,260		2,596		18,856	

| Table 12.
 Master's Degree Candidates for
 Department Type and Rank | 2003-2004 by |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

	CS		CE		CS\&CE	
Department, Rank	Total	Avg. Dept.	Total	Avg. per Dept.	Total	Avg. Dept.
US CS 1-12	597	49.8	50	4.2	647	53.9
US CS 13-24	772	64.3	5	0.4	777	64.8
US CS 25-36	342	28.5	0	0.0	342	28.5
US CS Other	3,929	34.2	289	2.5	4,218	36.7
Canadian	736	38.7	31	1.6	767	40.4
US CE	0	0.0	206	29.4	206	29.4
Total	6,376		581		6,957	

support their graduate students through teaching assistantships rather than research assistantships.
Respondents were asked to "provide the net amount (as of fall 2003) of an academic-year stipend for a graduate student (not including tuition or fees)." The results are shown in Table 26. Canadian stipends are shown in Canadian dollars. The higher the ranking band, the higher the median level of support for teaching assistants. Median amounts of support for research
assistants at the top 24 schools also are much higher than those for the lower-ranked bands.
Faculty Salaries (Tables 27-34)
Each department was asked to report the minimum, median, mean, and maximum salaries for each rank (full, associate, and assistant professors and non-tenure-track teaching faculty) and the number of persons at each rank. The salaries are those in effect on January 1, 2004. For US
departments, nine-month salaries are reported in US dollars. For Canadian departments, twelve-month salaries are reported in Canadian dollars. Respondents were asked to include salary supplements such as salary monies from endowed positions.

The minimum and maximum of the reported salary minima (and maxima) are self-explanatory. The range of salaries in a given rank among departments that reported data for that rank is the interval ["minimum of the minima," "maximum of the maxima"]. The mean of the reported salary minima (maxima) in a given rank is computed by summing the departmental reported minimum (maximum) and dividing by the number of departments reporting data at that rank.

The median salary at each rank is the middle of the list if you order its members' mean salaries at that rank from lowest to highest, or the average of the middle two numbers if there is an even number of items in the set. The average salary at each rank is computed by summing the individual means reported at each rank and dividing by the number of departments reporting at that rank. We recognize that these means and medians are only approximations to the true means and medians for their rank.
U.S. average salaries increased between 1.9% and 2.5%, depending on tenure-track rank, and 1.4% for non-tenure teaching faculty. These increases are less than the 3\% levels experienced last year. Canadian salaries (shown as 12 -month salaries in Canadian dollars) decreased by 0.8% to 2.0%, depending on rank. This compares unfavorably to last year's increase of 3.8% to 5.2% for different tenure-track categories; it may also reflect differences in the specific departments reporting, which has a more profound effect on Canadian results than on US results. Median salaries for new Ph.D.s (those who received their Ph.D. last year and then joined departments as
tenure-track faculty) were unchanged from those reported in last year's survey (Table 34). This may help ease the salary compression and inversion experienced during the dot-com boom.

Additional Departmental Profiles Analysis

Every three years, CRA collects additional information about various aspects of departmental activities that are not expected to change much over a one-year period. These data used to be collected via a separate survey, called the Departmental Profiles Survey. The most recent data from this survey were published in the November 2000 issue of Computing Research News. Effective this year, the data from this survey will be collected as part of the Taulbee data collection cycle during those years when these data are due to be collected (next in fall of 2006). The data include teaching loads, sources of external funding, methods of recruiting graduate students, departmental support staff, and space. Where possible, we will compare this year's results with the previous Profiles report. However, there is a much higher response rate from US CS departments to this year's survey, particularly among higher-ranked departments, so comparisons with the previous survey should be interpreted with this in mind.

Teaching Loads (Tables 35-38)

Tables 35-38 discuss teaching loads in semester-length courses per year. The US departments ranked 1-12 have the lowest teaching loads, both officially and actually, with departments ranked 13-36 having slightly higher loads and other CS departments and CE departments having the highest loads. The Canadian departments have official loads that are similar to those of the US departments ranked in the top 36 , but they seem to have less load

Taulbee Continued on Page 11

Department, Rank	CS			CE			CS\&CE Majors	
	PreMajor	Major	Avg. Major per Dept.	PreMajor	Major	Avg. Major per Dept.	Major	Avg. Major per Dept.
US CS 1-12	237	760	63.3	5	187	15.6	947	78.9
US CS 13-24	9	1,001	83.4	0	316	26.3	1,317	109.8
US CS 25-36	426	1,635	136.3	0	21	1.8	1,656	138.0
US CS Other	3,761	8,079	70.3	1,172	1,639	14.3	9,718	84.5
Canadian	823	3,423	180.2	0	59	3.1	3,482	183.3
US CE	0	0	0.0	38	586	97.7	586	97.7
Total	5,256	14,898	84.6	1,215	2,808	16.0	17,706	100.6

Department, Rank	CS		CE		CS\&CE	
US CS 1-12	1,371	7.0\%	70	3.7\%	1,441	6.7\%
US CS 13-24	1,718	8.8\%	94	4.9\%	1,812	8.4\%
US CS 25-36	832	4.3\%	0	0.0\%	832	3.9\%
US CS Other	13,649	69.7\%	1,040	54.7\%	14,689	68.4\%
Canadian	2,001	10.2\%	30	1.6\%	2,031	9.5\%
US CE	0	0.0\%	668	35.1\%	668	3.1\%
Total	19,571		1,902		21,473	

CRA Welcomes New Members

Academic

City University of New York, Graduate Center (CS) University of Michigan, Dearborn (CIS)
University of Nebraska at Omaha (IST)
Labs/Centers
McAfee Research, Network Associates, Inc.

2002-2003 Taulbee Survey

Department, Rank	CS			CE			CS\&CE Majors	
	PreMajor	Major	Avg. Major per Dept.	PreMajor	Major	Avg. Major per Dept.	Total	Avg. Major per Dept.
US CS 1-12	584	5,170	430.8	0	368	30.7	5,538	461.5
US CS 13-24	286	5,185	432.1	0	1,598	133.2	6,783	565.3
US CS 25-36	1,230	6,423	535.3	0	286	23.8	6,709	559.1
US CS Other	7,418	36,657	318.8	1,978	6,443	56.0	43,100	374.8
Canadian	1,516	13,006	684.5	0	101	5.3	13,107	689.8
US CE	0	0	0.0	132	1,607	267.8	1,607	267.8
Total	11,034	66,441	377.5	2,110	10,403	59.1	76,844	436.6

Table 17. Actual and Anticipated Faculty Size by Position

	$\begin{array}{c\|} \hline \text { Actual } \\ \hline \text { 2003-2004 } \end{array}$	Projected		Expected Two-Year Growth	
		2004-2005	2005-2006		
Tenure-Track	4,208	4,302	4,499	291	6.9\%
Researcher	468	485	539	71	15.2\%
Postdoc	312	342	390	78	25.0\%
Teaching Faculty	703	665	679	-24	-3.4\%
Other/Not Listed	140	134	141	1	0.7\%
Total	5,831	5,928	6,248	417	7.2\%

	Actual				Projected							
	2003-2004				2004-2005		2005-200			cted Tw	ar Gro	
US CS 1-12					695		685			-19	-2.7\%	
US CS 13-24					557		588			-4	-0.7\%	
US CS 25-36					563		609			93	18.0\%	
US CS Other		2,9			3,006		3,214			266	9.0\%	
Canadian					781		815			68	9.1\%	
US CE					326		337			13	4.0\%	
Total					5,928		6,248			417	7.2\%	
Table 19. Gender of Newly Hired Faculty												
	Tenure-track		Researcher		Postdoc		Teaching Faculty		Other		Total	
Male	239	81.6\%	73	85.9\%	90	78.9\%	73	78.5\%	18	81.8\%	493	81.2\%
Female	54	18.4\%	12	14.1\%	24	21.1\%	20	21.5\%	4	18.2\%	114	18.8\%
Total	293		85		114		93		22		607	

	Tenure-track		Researcher		Postdoc		Teaching Faculty		Other		Total
Nonresident Alien	62	22.8\%	12	14.6\%	34	32.7\%	14	15.7\%	6	30.0\%	128
African-American, Non-Hispanic	6	2.2\%	0	0.0\%	0	0.0\%	1	1.1\%	0	0.0\%	7
Native American/ Alaskan Native	1	0.4\%	0	0.0\%	0	0.0\%	0	0.0\%	0	0.0\%	1
Asian/Pacific Islander	54	19.9\%	23	28.0\%	24	23.1\%	9	10.1\%	4	20.0\%	114
Hispanic	3	1.1\%	1	1.2\%	4	3.8\%	0	0.0\%	0	0.0\%	8
White, Non-Hispanic	134	49.3\%	45	54.9\%	39	37.5\%	64	71.9\%	10	50.0\%	292
Other/Not Listed	12	4.4\%	1	1.2\%	3	2.9\%	1	1.1\%	0	0.0\%	17
Total have Ethnicity Data for	272		82		104		89		20		567
Ethnicity/ Residency Unknown	21		3		10		4		2		40
Total	293		85		114		93		22		607

	Full		Associate		Assistant		Teaching Faculty		Total	
Male	1,589	91.4\%	1,046	87.7\%	1,063	84.2\%	612	74.7\%	4,310	86.0\%
Female	150	8.6\%	147	12.3\%	200	15.8\%	207	25.3\%	704	14.0\%
Total have Gender Data for	1,739		1,193		1,263		819		5,014	

2002-2003 Taulbee Survey

Table 24. Total Expenditure from External Sources for CS/CE Research by Department Rank and Type

Department, Rank	Total Expenditure				Per Capita Expenditure			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	\$4,075,000.00	\$19,104,087.00	\$11,857,635.00	\$72,577,846.00	\$181,524.00	\$409,596.00	\$324,980.00	\$1,051,853.00
US CS 13-24	\$5,026,662.00	\$ 8,566,394.00	\$ 7,418,250.00	\$14,185,474.00	\$114,242.00	\$300,087.00	\$305,861.00	\$ 524,209.00
US CS 25-36	\$2,419,083.00	\$ 6,109,443.00	\$ 5,795,062.00	\$16,908,841.00	\$115,635.00	\$213,113.00	\$178,522.00	\$ 337,992.00
US CS Other	\$ 33,502.00	\$ 2,321,627.00	\$ 1,414,981.00	\$21,270,796.00	\$ 2,393.00	\$110,460.00	\$ 87,603.00	\$ 820,949.00
Canadian	\$ 65,457.00	\$ 2,002,239.00	\$ 1,135,837.00	\$ 8,725,154.00	\$ 2,045.00	\$ 55,322.00	\$ 35,272.00	\$ 189,677.00
US CE	\$1,000,000.00	\$ 2,659,400.00	\$ 2,819,287.00	\$ 3,999,027.00	\$ 71,795.00	\$201,574.00	\$117,311.00	\$ 499,878.00

Table 25. Graduate Students Supported as Full-Time Students by Department Type and Rank

	Number on Institutional Funds								Number on External Funds									
Department, Rank	Teaching Assistants	Research Assistants	$\left.\begin{array}{cc}\text { Graduate } \\ \text { Assistants } \\ \text { for } \\ \text { Computer }\end{array}\right\}$				Other		Teaching Assistants		Research Assistants		Graduate Assistants forComputer				Other	
US CS 1-12	437 21.0\%	266 12.8\%	96	4.6\%	0	0.0\%	0	0.0\%	0	0.0\%	1,058	50.9\%	210	10.1\%	1	0.0\%	10	0.5\%
US CS 13-24	314 20.7\%	193 12.7\%	111	7.3\%	6	0.4\%	6	0.4\%	3	0.2\%	826	54.5\%	45	3.0\%	0	0.0\%	12	0.8\%
US CS 25-36	388 29.3\%	151 11.4\%	56	4.2\%	10	0.8\%	38	2.9\%	0	0.0\%	621	46.8\%	49	3.7\%	0	0.0\%	13	1.0\%
US CS Other	1,709 36.6\%	635 13.6\%	162	3.5\%	157	3.4\%	74	1.6\%	40	0.9\%	1,697	36.3\%	176	3.8\%	16	0.3\%	9	0.2\%
Canadian	358 47.7\%	176 23.5\%	13	1.7\%	4	0.5\%	6	0.8\%	0	0.0\%	158	21.1\%	16	2.1\%	1	0.1\%	18	2.4\%
US CE	215 22.8\%	70 7.4\%	24	2.6\%	10	1.1\%	1	0.1\%	0	0.0\%	613	65.1\%		0.9\%	0	0.0\%		0.0\%
Total	3,421 30.3\%	1,491 13.2\%	462	4.1\%	187	1.7\%	125	1.1\%	43	0.4\%	4,973	44.1\%	504	4.5\%	18	0.2\%	62	0.5\%

2002-2003 Taulbee Survey

Department, Rank	Teaching Assistantships				Research Assistantships			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	\$ 9,225	\$17,444	\$17,100	\$36,552	\$13,824	\$19,318	\$17,100	\$39,264
US CS 13-24	\$12,540	\$17,441	\$16,100	\$28,290	\$14,980	\$20,105	\$17,888	\$43,908
US CS 25-36	\$13,000	\$15,867	\$14,753	\$25,299	\$13,190	\$16,566	\$14,925	\$31,686
US CS Other	\$ 2,194	\$12,447	\$12,600	\$24,300	\$ 2,194	\$13,472	\$13,536	\$24,300
Canadian	\$ 1,522	\$ 9,588	\$11,610	\$17,060	\$ 4,000	\$11,967	\$12,000	\$23,200
US CE	\$ 9,500	\$14,076	\$13,815	\$19,464	\$13,500	\$15,426	\$14,370	\$19,464

Department, Rank	Full-Support Fellows				Assistantships for Computer Systems Support			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	\$14,400	\$18,864	\$18,350	\$24,600	\$13,824	\$15,912	\$15,912	\$18,000
US CS 13-24	\$13,750	\$18,274	\$17,438	\$27,000	*	*	*	
US CS 25-36	\$13,000	\$19,252	\$18,000	\$29,940	\$14,228	\$14,693	\$14,850	\$15,000
US CS Other	\$ 5,600	\$15,743	\$15,500	\$24,000	\$ 1,323	\$11,213	\$12,250	\$18,000
Canadian	\$11,440	\$24,434	\$21,250	\$40,000	*	*	*	*
US CE	\$11,200	\$16,276	\$16,300	\$21,000	*	*	*	*

*Numbers not reported due to low number of respondents

| Table 26-3. Fall 2003 Academic-Year Graduate Stipends by |
| :--- | :--- | :--- | :--- | :--- |
| Department Type and Rank |

US CS 1-12	$*$	$*$	$*$	$*$
US CS 13-24	$*$	$*$	$*$	$*$
US CS 25-36	$\$ 3,300$	$\$ 15,382$	$\$ 15,925$	$\$ 26,378$
US CS Other	$\$ 1,200$	$\$ 10,037$	$\$ 12,000$	$\$ 15,000$
Canadian	$\$ 1,875$	$\$ 16,015$	$\$ 9,000$	$\$ 34,100$

*Numbers not reported due to low number of respondents

Taulbee from Page 11

quarters of the Canadian support, with the next highest levels of support coming from industrial sources and other mission-oriented federal agencies. Actual funding amounts were not reported in the CRN article associated with the 2000 Profiles Survey.

Graduate Student

Recruiting

(Tables 45-47)

Earlier we presented the current status of graduate student stipends (see Table 26). We update these each
year as part of the regular Taulbee Survey. The Profiles Survey asks about factors that affect these stipends, and this information is summarized in Table 45. For most US departments, stipend amounts are most frequently affected by advancement within the graduate program. Differences among the stipend source are important at many US CS departments, with years of service and recruiting enhancements being other factors in about a quarter of the departments. It is noteworthy that recruiting enhancements now are only a factor in about a quarter of the departments rather than about a
third in 2000, while the other factors are present in the same proportion of departments as in 2000. In Canada, the most important factor influencing stipend amounts is the source of funds.
Table 46 shows methods used by departments to recruit graduate students, and Table 47 shows the costs associated with these methods. Most of the top 36 ranked departments use multi-year (typically 3 or 4 years) support guarantees as a recruiting tool, whereas less than half of the CE departments and departments ranked above 36 or unranked do so. The vast majority of the top-ranked departments also pay for graduate students to visit campus, which is much less common among the CE and other CS departments. Topranked US CS departments are also much more likely to enhance graduate student stipends than the other departments surveyed. Overall, 45\% of the US CS departments had stipend enhancements in the 2000 survey, so this appears to be a much less prevalent tool than it was during the dot-com era. The typical enhancement is between $\$ 3,000$ and $\$ 4,000$ in the United States (about
two-thirds the value for the 2000 survey) and $\$ 5,000$ Canadian in Canada. The amount spent on paid visits to campus appears comparable to the value in 2000, and the amount of guaranteed summer support appears consistent with the general stipend increases over the three-year period since the last Profiles Survey.

Departmental Support Staff (Tables 48-50)

Tables 48-50 show various kinds of staff support provided to the department. Table 48 shows that the higher the ranking, the more fulltime secretarial and administrative support the department has. Schools ranked 1-12 have more than four times as much support as the lowerranked CS departments and 1.5 times as much support as a CE department. It may be more useful to normalize these data by the size of the department's tenure-track faculty. If this is done, the top 12 departments and the CE departments have about 0.4 administrative support staff per faculty, departments ranked 13 36 about 0.3 , and those ranked Taulbee Continued on Page 14

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	608	\$16,000	\$48,182	\$ 88,303	\$ 55,833	\$ 55,526	\$34,000	\$ 65,234	\$135,100
Assistant Professor	1,000	\$48,269	\$72,091	\$ 87,000	\$ 76,531	\$ 76,392	\$61,316	\$ 81,297	\$124,542
Associate Professor	922	\$42,158	\$77,029	\$108,000	\$ 85,555	\$ 85,437	\$64,744	\$ 94,932	\$165,000
Full Professor	1,335	\$52,200	\$89,300	\$122,540	\$111,354	\$107,670	\$83,500	\$147,671	\$280,786

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	60	\$32,205	\$45,792	\$ 70,000	\$ 66,802	\$ 67,919	\$ 67,700	\$ 85,589	\$110,838
Assistant Professor	113	\$51,748	\$77,281	\$ 87,000	\$ 83,477	\$ 82,794	\$ 85,000	\$ 92,775	\$115,000
Associate Professor	90	\$66,732	\$86,228	\$108,000	\$ 95,252	\$ 94,662	\$ 79,300	\$107,859	\$130,000
Full Professor	230	\$73,874	\$94,943	\$113,000	\$124,510	\$121,887	\$125,737	\$176,277	\$ 225,000

2002-2003 Taulbee Survey

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	46	\$48,000	\$59,944	\$ 74,000	\$ 68,413	\$ 66,829	\$ 62,220	\$ 79,761	\$100,000
Assistant Professor	89	\$75,000	\$79,525	\$ 85,000	\$ 84,913	\$ 83,572	\$ 82,500	\$ 91,169	\$117,000
Associate Professor	70	\$67,915	\$87,669	\$ 98,900	\$ 95,435	\$ 94,297	\$ 85,900	\$101,882	\$127,000
Full Professor	192	\$76,000	\$94,554	\$110,500	\$129,861	\$121,421	\$153,422	\$189,246	\$280,786

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	51	\$40,823	\$52,945	\$ 75,408	\$ 62,830	\$ 61,209	\$ 60,705	\$ 78,617	\$135,100
Assistant Professor	106	\$68,000	\$75,101	\$ 81,600	\$ 78,682	\$ 78,396	\$ 78,000	\$ 83,261	\$ 88,134
Associate Professor	98	\$64,307	\$80,238	\$ 96,750	\$ 91,144	\$ 92,706	\$ 87,725	\$105,200	\$165,000
Full Professor	158	\$68,199	\$93,131	\$120,756	\$121,309	\$119,633	\$110,650	\$166,450	\$252,000

Table 31. Nine-month Salaries, 112 Responses of 133 US Computer Science Departments Ranked Higher than 36 or Unranked

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	451	\$16,000	\$46,650	\$ 88,303	\$ 53,037	\$ 52,903	\$34,000	\$ 60,884	\$110,000
Assistant Professor	692	\$48,269	\$70,463	\$ 85,698	\$ 74,720	\$ 74,779	\$61,316	\$ 78,901	\$124,542
Associate Professor	664	\$42,158	\$74,723	\$106,500	\$ 83,032	\$ 82,885	\$64,744	\$ 91,933	\$160,000
Full Professor	756	\$52,200	\$87,744	\$122,540	\$106,934	\$103,443	\$83,500	\$138,227	\$220,773

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	13	\$44,112	\$64,287	\$ 83,150	\$ 70,549	\$ 70,437	\$ 54,468	\$ 77,539	\$ 95,000
Assistant Professor	64	\$65,000	\$74,760	\$ 88,800	\$ 78,419	\$ 78,093	\$ 71,108	\$ 82,861	\$ 89,300
Associate Professor	42	\$63,700	\$79,865	\$109,200	\$ 86,404	\$ 85,865	\$ 77,563	\$ 93,051	\$109,200
Full Professor	111	\$76,360	\$92,674	\$109,000	\$110,966	\$101,747	\$108,749	\$156,693	\$200,000

Table 33. Twelve-month Salaries, 19 Responses of 27 Canadian Computer Science Departments (Canadian Dollars)

Faculty Rank	Number of Faculty	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Non-Tenure Teaching Faculty	69	\$37,963	\$57,174	\$ 75,000	\$ 62,720	\$ 62,852	\$49,551	\$ 70,216	\$105,327
Assistant Professor	182	\$45,606	\$70,799	\$ 90,000	\$ 77,371	\$ 77,207	\$65,268	\$ 85,724	\$105,342
Associate Professor	190	\$50,000	\$78,544	\$ 97,277	\$ 88,637	\$ 88,011	\$69,582	\$ 99,221	\$130,212
FullProfessor	244	\$60,659	\$91,774	\$112,485	\$110,008	\$107,883	\$85,017	\$138,125	\$193,814

Employment Position	Number	Reported Salary Minimum			Overall Mean	Overall Median	Reported Salary Maximum		
		Minimum	Mean	Maximum			Minimum	Mean	Maximum
Tenure-Track Faculty	117	\$61,128	\$75,493	\$87,679	\$76,379	\$76,308	\$61,128	\$77,363	\$120,000
Researcher	9	\$36,900	\$55,556	\$72,000	\$55,556	\$55,556	\$36,900	\$55,556	\$72,000
Postdoc	24	\$30,000	\$44,737	\$61,000	\$45,970	\$45,970	\$35,000	\$47,204	\$61,000
Non-Tenure Teaching Faculty	9	\$40,000	\$55,726	\$72,000	\$55,793	\$55,793	\$40,000	\$55,860	\$72,000

2002-2003 Taulbee Survey

Table 35. Official and Actual Teaching Loads of Tenured and Tenure-track Faculty

Department, Rank	Official Teaching Load				Actual Teaching Load			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	2	2.3	2.0	3	2	2.2	2.0	3
US CS 13-24	2	2.7	2.5	4	2	2.4	2.0	4
US CS 25-36	2	2.6	2.5	4	2	2.4	2.0	4
US CS Other	2	3.8	4.0	9	2	3.3	3.0	9
Canadian	2	2.3	3.0	4	2	3.0	3.0	4
US CE	2	3.6	4.0	5	2	2.9	3.0	4
Total	2	3.5	3.0	9	2	3.0	3.0	9

Taulbee from Page 12

above 36 or unranked and the Canadian departments have about 0.2. For the US CS departments, these normalized values are less than they were in 2000. About 80% of funding for administrative support staff comes from institutional funds in the top 24 departments, and 90% or more comes from institutional funds in other departments.
The number of computer-support personnel employed by a CS department (Table 49) varies from a low of about 0.1 per tenure-track faculty for CE departments and US CS departments ranked above 36 or unranked, to slightly more than 0.2 per tenuretrack faculty for US departments ranked 1-12 and for Canadian departments. Top-ranked departments are much more likely to support such positions with external funds (almost half of computer support personnel in the top 12 departments are paid from external funds, while only 10% to 20% of these personnel in Canadian departments, CE departments, and US departments ranked above 24 are supported by external funds).
Table 50 shows full-time research employees. US CE and Canadian CSE departments typically employ with internal funds five or six times as many full-time researchers as do US CS departments. US CS depart-
ments ranked in the top 24 have many more such positions than do the other departments, both in raw numbers and on a per FTE tenuretrack faculty basis; they are mainly supported with external funds. Except for the top 12 departments, the ratios of research employees per FTE tenure-track faculty in US CS departments have declined since 2000.

Departmental Space (Tables 51-62)

Tables 51-62 illustrate a variety of space details. Table 51 lists total current departmental space. The amount of space held by a department varies widely, by a factor of almost 200 from smallest to largest space. Within the US CS departments, the average department ranked 1-12 has 1.5 times as much space per tenure-track faculty as the typical other CS department. Average values per tenure-track faculty in all US CS categories are below their corresponding values in the 2000 Profiles Survey, although in each stratum, actual average space has grown at least 10%. The actual amount of additional space per department increased about 5,000 sq ft. from 2000 to 2003. In 2000, departments estimated that they would receive over $30,000 \mathrm{sq}$. ft. of new space by 2003. These differences may be explained by a combination of optimism on the part of the

Table 36. Faculty Load Reductions and Increases

	Faculty Load Reduction Possible			Faculty Load Increase Possible	
Department, Rank	Yes	No		Yes	No
US CS 1-12	91.7%	8.3%		77.8%	22.2%
US CS 13-24	83.3%	16.7%	80.0%	20.0%	
US CS 25-36	83.3%	16.7%	80.0%	20.0%	
US CS Other	98.2%	1.8%	77.0%	23.0%	
Canadian	100.0%	0.0%	81.3%	18.8%	
US CE	100.0%	0.0%	66.7%	33.3%	
Total	$\mathbf{9 6 . 0} \%$	$\mathbf{4 . 0 \%}$	$\mathbf{7 7 . 5} \%$	$\mathbf{2 2 . 5} \%$	

departments, and the fact that much of the new space ends up replacing existing space rather than adding to it. Canadian departments average about 10% to 20% below typical US CS departments. CE departments have the highest amount of space per FTE faculty (about 56% above the level for rank 1-12 US CS departments).

Tables 52-55 break down current space by category of space. The pattern in Table 51 for total department space is similar in Table 52 (space for faculty, staff, and student offices) and Table 53 (space for conference and seminar rooms). Table 54 shows that the CS departments ranked in the top 24 have substantially more research laboratory space than the other CS departments. On a per tenure-track faculty basis, the differences are not as great among the US CS departments, but Canadian departments appear to have only three-quarters the space per tenuretrack faculty. CE departments have about three times as much research lab space per tenure-track faculty as do CS departments. Instructional lab space, shown in Table 55, is much greater for the top 12 ranked US CS departments and the Canadian departments than for other departments responding. However, several departments apparently do not have instructional lab space. Probably in those departments that space is owned by their college or centra campus offices, and in fact it is likely that many of the other departments have at least some of their instructional space provided by a more central university unit.
It is interesting to note that research lab space now is 27.7% of the total space, whereas in 2000 it was only 21.0%. All other categories of space are a somewhat smaller proportion of total space to compensate for this.

Tables 56-62 show space growth expectations. Table 56 indicates that only about half of the departments responding actually have definite plans for new space. This contrasts
with an 81% figure in the 2000 sur vey. Table 57 shows when the space is expected to be added, Table 58 shows the total space expected, and Tables 59-62 break down these expected additions by category of space. Expected growth in office space accounts for the largest proportion (41.5%) of the total expected space growth, but this is a smaller proportion of office space than exists currently (50.9%). Each other category of space accounts for about a 3% higher proportion of the total planned space than it does as a proportion of current space.

Concluding Observations

This year, we see more conclusive data supporting reductions in undergraduate enrollments. This effect is observed in both the United States and Canada. While the reductions are significant, they should be interpreted in view of the staggering increases experienced in the late 1990s. Present enrollment levels are still considerably higher than before the surge during the dot-com era.

An upturn in the number of Ph.D.s produced appears to be on the horizon, absent exogenous forces. The multi-year increase in the number of students who passed qualifiers should soon have an effect on the number of graduates from Ph.D. programs. It will be interesting to see if this trend continues as economic conditions improve.

Faculty churn appears to be over, at least for the time being. Far fewer faculty moved from one academic position to another. Estimates of faculty growth are considerably more modest, and more accurate, than in previous years. Faculty salaries showed rather small increases compared with the recent past. These observations all are consistent with the economic downturn.

Some data from the former Departmental Profiles Survey showed differences, but much of it did not. This validates CRA's decision to conduct the Profiles analysis only every 3 years (next in fall 2006). Of

Department, Rank	Special Package for New Faculty	Administrative Duties	Type or Size of Class Taught	Buyout Policy	Strong Research Involvement	Other
US CS 1-12	75.0\%	75.0\%	33.3\%	33.3\%	33.3\%	25.0\%
US CS 13-24	58.3\%	83.3\%	25.0\%	66.7\%	33.3\%	25.0\%
US CS 25-36	75.0\%	75.0\%	16.7\%	58.3\%	33.3\%	16.7\%
US CS Other	88.6\%	83.3\%	29.8\%	83.3\%	52.6\%	7.9\%
Canadian	89.5\%	94.7\%	21.1\%	21.1\%	68.4\%	42.1\%
US CE	100.0\%	100.0\%	57.1\%	85.7\%	42.9\%	14.3\%
Total	85.2\%	84.1\%	29.0\%	70.5\%	50.0\%	14.8\%

2002-2003 Taulbee Survey

Table 38. Reasons for Increase in Teaching Load		
Shifting Primary Responsibilities to Teaching	Other	
Department, Rank	77.8%	22.2%
US CS 1-12	80.0%	20.0%
US CS 13-24	80.0%	20.0%
US CS 25-36	74.4%	25.6%
US CS Other	81.3%	18.8%
Canadian	50.0%	50.0%
US CE	$\mathbf{7 0 . 3} \%$	$\mathbf{2 9 . 7} \%$
Total		

particular note is that high space growth is no longer forecast, consistent with the softening of faculty growth. Also, fewer departments appear to be offering special stipend enhancements as a means to recruit new graduate students.

Rankings

For tables that group computer science departments by rank, the rankings are based on information
collected in the 1995 assessment of research and doctorate programs in the United States conducted by the National Research Council [see http://www.cra.org/statistics/nrcstudy $2 /$ home.html].
The top twelve CS departments in this ranking are: Stanford, Massachusetts Institute of Technology, University of California (Berkeley), Carnegie Mellon, Cornell, Princeton, University of Texas (Austin),

University of Illinois (Urbana Champaign), University of Washington, University of Wisconsin (Madison), Harvard, and California Institute of Technology. All schools in this ranking participated in the survey this year.

CS departments ranked 13-24 are: Brown, Yale, University of California (Los Angeles), University of Maryland (College Park), New York University, University of Massachusetts (Amherst), Rice, University of Southern California, University of Michigan, University of California (San Diego), Columbia, and University of Pennsylvania. ${ }^{2}$ All schools in this ranking participated in the survey this year.

CS departments ranked 25-36 are: University of Chicago, Purdue, Rutgers, Duke, University of North Carolina (Chapel Hill), University of Rochester, State University of New York (Stony Brook), Georgia Institute
of Technology, University of Arizona, University of California (Irvine), University of Virginia, and Indiana. All schools in this ranking participated in the survey this year.

CS departments that are ranked above 36 or that are unranked that responded to the survey include: Arizona State University, Auburn, Boston, Brandeis, Case Western Reserve, City University of New York Graduate Center, Clemson, College of William and Mary, Colorado School of Mines, Colorado State, Dartmouth, DePaul, Drexel, Florida Institute of Technology, Florida International, Florida State, George Mason, George Washington, Georgia State, Illinois Institute of Technology, Iowa State, Johns Hopkins, Kansas State, Kent State, Lehigh, Louisiana State, Michigan State, Michigan Tech nological, Mississippi State, Montana State, New Jersey Institute of

Taulbee Continued on Page 17

	Mean	Median	Total	\% of Total External Funding
NSF	\$6,366,220	\$4,952,790	\$57,295,983	30.0\%
DARPA	\$5,453,909	\$2,236,118	\$27,269,545	14.3\%
NIH	\$ 345,590	\$ 183,000	\$ 1,727,950	0.9\%
DOE	\$ 814,417	\$ 400,000	\$ 4,072,087	2.1\%
State agencies	\$ 773,488	\$1,150,681	\$ 2,320,465	1.2\%
Industrial sources	\$3,437,715	\$ 580,656	\$30,939,433	16.2\%
Other defense agenciese.g., ARO, AFOSR, ONR	\$4,639,002	\$2,679,563	\$37,112,013	19.4\%
Other mission-oriented federal agencies	\$2,007,744	\$1,676,260	\$12,046,461	6.3\%
Private foundation	\$ 225,414	\$ 85,321	\$ 1,803,313	0.9\%
Other	\$2,350,517	\$ 514,161	\$16,453,616	8.6\%

	Mean	Median	Total	\% of Total External Funding
NSF	\$3,317,498	\$3,509,750	\$36,492,481	38.5\%
DARPA	\$1,795,567	\$1,189,851	\$14,364,532	15.2\%
NIH	\$ 366,867	\$ 312,865	\$ 2,934,936	3.1\%
DOE	\$ 400,345	\$ 192,227	\$ 2,402,071	2.5\%
State agencies	\$ 700,109	\$ 433,446	\$ 4,900,764	5.2\%
Industrial sources	\$ 507,896	\$ 357,274	\$ 5,078,957	5.4\%
Other defense agenciese.g., ARO, AFOSR, ONR	\$1,902,168	\$1,201,700	\$19,021,681	20.1\%
Other mission-oriented federal agencies	\$ 556,761	\$ 505,765	\$ 4,454,090	4.7\%
Private foundation	\$ 249,418	\$ 76,803	\$ 2,244,760	2.4\%
Other	\$ 483,744	\$ 210,579	\$ 2,902,461	3.1\%

Total external funding does not equal total in Table 24 due to one department not reporting breakdowns

Table 41. Sources of External Funding, US CS Ranked 25-36

Table 41. Sources of External Funding, US CS Ranked 25-36			Total Mean	Median
External Funding				

2002-2003 Taulbee Survey

	Mean	Median	Total	\% of Total External Funding
NSF	\$1,054,709	\$502,646	\$97,033,219	42.6\%
DARPA	\$ 377,842	\$285,161	\$14,735,837	6.5\%
NIH	\$ 412,931	\$225,346	\$ 9,497,404	4.2\%
DOE	\$ 347,239	\$ 77,357	\$10,764,409	4.7\%
State agencies	\$ 247,246	\$118,676	\$13,104,054	5.8\%
Industrial sources	\$ 181,055	\$ 77,945	\$11,587,501	5.1\%
Other defense agencies e.g., ARO, AFOSR, ONR	\$ 533,171	\$323,180	\$36,788,786	16.2\%
Other mission-oriented federal agencies	\$ 341,826	\$160,449	\$14,014,854	6.2\%
Private foundation	\$ 84,330	\$ 26,176	\$ 2,698,547	1.2\%
Other	\$ 375,975	\$136,957	\$17,294,863	7.6\%

	Mean	Median	Total	\% of Total External Funding
NSF	\$913,026	\$876,053	\$3,652,105	34.3\%
DARPA	\$758,024	\$700,000	\$3,032,096	28.5\%
NIH	*	*	\$ 150,000	1.4\%
DOE	\$-	\$-	\$ -	0.0\%
State agencies	*	*	\$1,171,074	14.9\%
Industrial sources	\$375,500	\$417,458	\$1,126,501	10.6\%
Other defense agencies e.g., ARO, AFOSR, ONR	*	*	\$ 530,525	5.0\%
Other mission-oriented federal agencies	\$-	\$-	\$	0.0\%
Private foundation	*	*	\$ 82,297	0.8\%
Other	*	*	\$ 893,002	8.4\%

* Numbers not reported due to low number of respondents

Table 44. Sources of External Funding, Canadian CS/CE						
	Mean		Median	Total		\% of Total
:---:						
External Funding						

* Numbers not reported due to low number of respondents

Department, Rank	Advancement to Next Stage of Program	Years of Service	GPA	Recruitment Enhancements	Differences Among Various Stipend Sources	Other
US CS 1-12	66.7\%	16.7\%	0.0\%	41.7\%	41.7\%	25.0\%
US CS 13-24	33.3\%	25.0\%	8.3\%	8.3\%	16.7\%	58.3\%
US CS 25-36	58.3\%	25.0\%	8.3\%	25.0\%	25.0\%	33.3\%
US CS Other	65.5\%	22.1\%	15.9\%	23.0\%	48.7\%	19.5\%
Canadian	29.4\%	23.5\%	23.5\%	35.3\%	64.7\%	29.4\%
US CE	66.7\%	33.3\%	16.7\%	16.7\%	16.7\%	33.3\%
Total	59.3\%	22.7\%	14.5\%	24.4\%	44.8\%	25.0\%
Table 46. Departments Using Selected Graduate Student Recruitment Incentives						
Department, Rank	Upfront One-Time Signing Bonus	Stipend Enhancements	Guaranteed Multi-Year Support	Guaranteed Summer Support	Paid Visits to Campus	Other Recruitment Incentives
US CS 1-12	25.0\%	41.7\%	75.0\%	8.3\%	83.3\%	41.7\%
US CS 13-24	8.3\%	33.3\%	100.0\%	50.0\%	83.3\%	33.3\%
US CS 25-36	16.7\%	41.7\%	75.0\%	41.7\%	83.3\%	25.0\%
US CS Other	6.2\%	15.0\%	38.1\%	21.2\%	25.7\%	23.0\%
Canadian	17.6\%	17.6\%	64.7\%	11.8\%	23.5\%	23.5\%
US CE	0.0\%	16.7\%	33.3\%	50.0\%	50.0\%	16.7\%
Total	9.3\%	20.3\%	50.0\%	23.8\%	38.4\%	25.0\%

2002-2003 Taulbee Survey

Taulbee from Page 15
Technology, New Mexico State, North Carolina State, North Dakota State, Northeastern, Northwestern, Oakland, Ohio, Ohio State, Oklahoma State, Old Dominion, Oregon Health \mathcal{E} Science, Oregon State, Pennsylvania State, Polytechnic, Portland State, Rensselaer Polytechnic, Southern Methodist, State University of New York (Albany), Syracuse, Texas AㅋM, Texas Tech, Tufts, Utah State, Vanderbilt, Virginia Commonwealth,
Virginia Polytechnic, Washington State, Washington (St. Louis), Wayne State, Western Michigan, Worcester
Polytechnic, and Wright State.
University of: Alabama (Birmingham, Huntsville, and Tuscaloosa), Buffalo, California (at Davis, Riverside, Santa Barbara, and Santa Cruz), Cincinnati, Colorado (at Boulder, Colorado Springs, and
Denver), Connecticut, Delaware,
Denver, Florida, Georgia, Hawaii,

Houston, Idaho, Illinois (Chicago), Iowa, Kansas, Kentucky, Louisiana (Lafayette), Louisville, Maine, Maryland (Baltimore Co.), Massachusetts (at Boston and Lowell), Minnesota, Missouri (at Kansas City and Rolla), Nebraska (Lincoln), Nevada (Las Vegas), New Hampshire, New Mexico, North Texas, Notre Dame, Oklahoma, Oregon, Pittsburgh, South Carolina, South Florida, Tennessee (Knoxville), Texas (at Arlington, Dallas, El Paso, and San Antonio), Tulsa, Utah, and Wyoming.

Computer Engineering departments participating in the survey this year include: Georgia Institute of Technology, Northwestern, Princeton, Rensselaer Polytechnic, Santa Clara University, the University of Tennessee (Knoxville), and the University of California (Santa Cruz).

Canadian departments participating in the survey include: Concordia, Dalhousie, McGill, Memorial, Queen's, Simon Fraser, and

York universities. University of: Alberta, British Columbia, Calgary, Manitoba, Montreal, New Brunswick, Quebec (Montreal), Regina, Saskatchewan, Victoria, Waterloo, and Western Ontario.

Acknowledgments

Jean Smith and Drew Sutter assisted with data collection, tabulation, and analysis for this survey. Andy Bernat and Jay Vegso assisted with the preparation of the final report. We thank them for their assistance.

Stuart Zweben (zweben@cis.ohiostate.edu), Ohio State University

William Aspray
(waspray@indiana.edu), Indiana University

Endnotes

${ }^{1}$ The title of the survey honors the
late Orrin E. Taulbee of the University of Pittsburgh, who conducted these surveys
for the Computer Science Board until 1984, with retrospective annual data going back to 1970.
${ }^{2}$ Although the University of Pennsylvania and the University of Chicago were tied in the National Research Council rankings, CRA made the arbitrary decision to place Pennsylvania in the second tier of schools.

All tables with rankings: Statistics sometimes are given according to departmental rank. Schools are ranked only if they offer a CS degree and according to the quality of their CS program as determined by reputation. Those that only offer CE degrees are not ranked, and sta tistics are given on a separate line, apart from the rankings.

All ethnicity tables: Ethnic breakdowns are drawn from guidelines set forth by the U.S. Department of Education.

All faculty tables: The survey makes no distinction between faculty specializing in CS vs. CE programs. Every effort is made to minimize the inclusion of faculty in electrical engineering who are not computer engineers.

Department, Rank	Upfront One-Time Signing Bonus	Stipend Enhancements	Guaranteed Years of Support	Guaranteed Summer Support	Paid Visits to Campus
US CS 1-12	\$4,000	\$2,960	3.6	*	\$598
US CS 13-24	*	\$4,000	3.7	\$5,870	\$570
US CS 25-36	\$3,500	\$3,640	3.4	\$5,374	\$511
US CS Other	\$2,857	\$2,866	3.1	\$3,739	\$559
Canadian	\$4,667	\$5,000	3.0	\$3,800	\$563
US CE	NA	*	4.5	\$6,400	\$267
Total	\$3,625	\$3,238	3.3	\$4,601	\$546

*Numbers not reported due to low number of respondents

Department, Rank	Institutional Support				External Support				Total			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	5.0	19.3	12.0	80.0	-	6.1	2.5	37.0	5.0	25.4	18.5	85.0
US CS 13-24	7.0	11.2	10.0	18.0	-	2.8	2.0	10.0	8.0	14.0	13.5	22.0
US CS 25-36	5.0	12.6	9.0	38.0	-	1.0	1.0	4.0	5.0	13.6	9.0	42.0
US CS Other	1.0	4.6	3.0	33.0	-	0.5	-	8.0	1.0	5.1	4.0	33.0
Canadian	3.0	8.3	7.0	22.0	-	0.4	-	3.0	3.0	8.7	7.0	25.0
US CE	-	16.1	7.0	79.0	-	1.0	-	4.0	-	17.1	11.0	120.0
Total	-	7.4	5.0	80.0	-	1.1	-	37.0	-	8.5	6.0	85.0
Table 49. Full-time Computer Support Employees by Type of Support												
Department, Rank	Institutional Support				External Support				Total			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	-	6.2	4.0	20.0	-	5.8	4.0	30.0	3.0	11.9	8.0	50.0
US CS 13-24	-	5.3	4.0	13.0	-	2.1	0.5	9.0	-	7.4	5.5	22.0
US CS 25-36	-	7.1	7.0	15.0	-	0.8	1.0	2.0	-	7.8	7.0	16.0
US CS Other	-	2.5	2.0	12.0	-	0.5	-	8.0	-	3.0	2.0	12.0
Canadian	4.0	8.5	6.0	22.0	-	0.2	-	2.0	4.0	8.7	6.5	22.0
US CE	-	3.0	1.0	15.0	-	0.3	-	2.0	-	3.3	2.0	15.0
Total	-	3.9	3.0	22.0	-	0.9	-	30.0	-	4.8	3.0	50.0
Table 50. Full-time Research Employees by Type of Support												
Department, Rank	Institutional Support				External Support				Total			
	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum	Minimum	Mean	Median	Maximum
US CS 1-12	-	0.9	-	10.0	-	21.3	6.0	160.0	-	22.2	6.0	170.0
US CS 13-24	-	1.4	-	11.0	-	13.9	7.0	42.0	1.0	15.3	9.0	42.0
US CS 25-36	-	0.8	-	9.0	-	2.2	0.5	11.0	-	2.9	0.5	11.0
US CS Other	-	0.3	-	9.0	-	1.6	-	26.0	-	1.9	-	28.0
Canadian	-	1.8	-	30.0	-	3.3	0.5	15.0	-	5.2	1.5	30.0
US CE	-	8.3	-	56.0	-	1.9	-	11.0	-	10.1	-	56.0
Total	-	0.9	-	56.0	-	4.1	-	160.0	-	5.0	-	170.0

2002-2003 Taulbee Survey

Department, Rank	Minimum	Mean	Median	Maximum	Total
US CS 1-12	14,410	65,147	53,357	201,580	781,765
US CS 13-24	13,344	36,669	36,206	58,162	440,032
US CS 25-36	15,383	37,675	27,943	109,941	452,102
US CS Other	1,500	20,255	16,924	57,743	2,106,551
Canadian	4,912	26,990	24,542	63,520	404,845
US CE	10,509	80,386	41,000	291,000	401,933

Table 52. Departmental Space for Faculty, Staff, and Student Offices (net sq. ft.)					
Department, Rank	Minimum	Mean	Median	Maximum	Total
US CS 1-12	6,270	33,904	30,297	104,295	406,848
US CS 13-24	10,632	23,062	21,889	37,618	276,749
US CS 25-36	7,735	22,161	18,233	52,027	265,936
US CS Other	763	9,656	7,744	32,997	$1,004,200$
Canadian	1,959	11,275	8,653	169,132	
US CE	4,118	42,632	8,000	181,225	213,164

Table 53. Departmental Space for Conference and Seminar Rooms (net sq. ft.)

Department, Rank	Minimum	Mean	Median	Maximum	Total
US CS 1-12	1,939	6,597	5,371	16,754	79,168
US CS 13-24	-	2,663	2,383	5,287	31,950
US CS 25-36	836	2,801	2,509	7,246	33,613
US CS Other	-	1,048	700	5,000	108,998
Canadian	-	1,582	1,226	7,376	23,731
US CE	-	776	242	2,500	3,884

Department, Rank	Minimum	Mean	Median	Maximum	Total
US CS 1-12	4,500	14,763	8,568	74,131	177,156
US CS 13-24	2,228	8,405	8,678	15,841	100,862
US CS 25-36	-	9,586	4,762	51,675	115,027
US CS Other	-	5,891	4,705	40,168	612,617
Canadian	687	7,121	6,380	15,477	106,816
US CE	3,145	31,674	23,000	100,000	158,368

Department, Rank	Minimum	Mean	Median	Maximum	Total
US CS 1-12	1,631	9,883	7,830	28,255	118,593
US CS 13-24	-	2,539	2,625	8,716	30,471
US CS 25-36	700	3,127	2,434	8,073	37,526
US CS Other	-	3,661	2,722	19,875	380,736
Canadian	700	7,011	5,903	16,845	105,166
US CE	1,341	5,303	6,239	10,000	26,517

Table 56. Definite Departmental Plans to Gain New Space			
Department, Rank	Yes	No	No Answer
US CS 1-12	41.7%	16.7%	41.7%
US CS 13-24	50.0%	16.7%	33.3%
US CS 25-36	66.7%	0.0%	33.3%
US CS Other	45.6%	31.6%	22.8%
Canadian	66.7%	16.7%	16.7%
US CE	71.4%	14.3%	14.3%
Total	$\mathbf{5 0 . 3} \%$	$\mathbf{1 9 . 4} \%$	$\mathbf{3 0 . 3} \%$

INVITATION FOR PARTICIPATION

CRA-W Distinguished Lecture Series and Graduate School Recruiting Panels

Applications now being accepted to host recruitment events designed to attract female students to graduate school. Applications from all educational institutions, including minority institutions, are solicited.

See: http://www.cra.org/distinguished.lecture/ Contact Program Coordinators:
Renée J. Miller (miller@cs.toronto.edu) Joann Ordille (joann@avaya.com)

2002-2003 Taulbee Survey

2003		2004		2005		2006		2007		2008		2009	
No.	\%												
6	7.1\%	48	56.5\%	17	20.0\%	6	7.1\%	2	2.4\%	5	5.9\%	1	1.2\%

Table 58. Total Expected Additional Space of Departments Adding Space (net sq. ft.)					
Department, Rank	Minimum	Mean	Median	Maximum	Total
US CS 1-12	700	41,723	3,900	158,390	166,890
US CS 13-24	1,528	21,134	1,068	46,600	126,803
US CS 25-36	500	26,261	19,920	63,000	183,824
US CS Other	100	16,733	12,000	82,048	752,993
Canadian	1,658	13,492	8,000	35,647	148,412
US CE	3,614	18,259	9,710	50,000	73,034

Department, Rank	\% Adding None**	Minimum	Mean	Median	Maximum	Total
US CS 1-12	25.0\%	700	28,367	5,000	79,400	85,100
US CS 13-24	0.0\%	764	10,268	4,677	28,000	61,607
US CS 25-36	14.3\%	550	8,611	6,578	20,000	51,664
US CS Other	13.3\%	100	7,900	4,401	35,589	308,094
Canadian	0.0\%	1,231	5,802	3,000	16,645	63,824
US CE	0.0\%	2,000	8,164	2,827	25,000	32,654

*Square footage numbers include only those departments adding additional office space
**Percentage is among all departments adding total space

Department, Rank	\% Adding None***	Minimum	Mean	Median	Maximum	Total
US CS 1-12	50.0\%	*	9,540	9,540	*	19,080
US CS 13-24	33.3\%	625	3,079	2,885	5,923	12,317
US CS 25-36	42.9\%	1,600	4,263	4,475	6,500	17,050
US CS Other	40.0\%	153	2,506	1,000	10,515	67,658
Canadian	27.3\%	800	1,651	1,253	3,420	13,209
US CE	50.0\%	*	2,725	2,725	*	5,450

*Numbers not reported due to low number of respondents
${ }^{* *}$ Square footage numbers include only those departments adding additional conference and seminar space
***Percentage is among all departments adding total space

Department, Rank	\% Adding None***	Minimum	Mean	Median	Maximum	Total
US CS 1-12	75.0\%	*	*	*	*	29,470
US CS 13-24	16.7\%	764	8,991	11,000	17,727	44,956
US CS 25-36	28.6\%	500	18,246	16,920	32,700	91,230
US CS Other	24.4\%	300	6,157	5,621	17,983	209,344
Canadian	27.3\%	1,105	6,048	5,701	10,555	48,382
US CE	25.0\%	6,930	8,310	8,000	10,000	24,930

*Numbers not reported due to low number of respondents
**Square footage numbers include only those departments adding research laboratory space
${ }^{* * *}$ Percentage is among all departments adding total space

Department, Rank	\% Adding None***	Minimum	Mean	Median	Maximum	Total
US CS 1-12	50.0\%	*	16,620	16,620	*	33,240
US CS 13-24	50.0\%	1,100	2,641	2,823	4,000	7,923
US CS 25-36	42.9\%	650	5,970	6,615	10,000	23,880
US CS Other	44.4\%	600	6,716	5,064	27,636	167,897
Canadian	36.4\%	350	3,285	2,000	9,944	22,997
US CE	75.0\%	*	*	*	*	10,000

[^0]
[^0]: *Numbers not reported due to low number of respondents
 **Square footage numbers include only those departments adding instructional laboratory space
 ***Percentage is among all departments adding total space

