LearnSphere to Integrate DataShop, MOOCdb, DataStage, DiscourseDB ... Integrating Data Repositories Panel

Ken Koedinger

Professor of Human-Computer Interaction & Psychology Carnegie Mellon University

Workshop 2: Advancing Data-Intensive Research in Education June 1, 2015

Big Data for education

More important than "big"

- Collected as part of natural activities
- Affords experimentation, "A/B testing"

Many dimensions of "big"

- *Tall* in number of participants (students)
- Wide in observations per participant (student)
- *Fine* in frequency of observation
- Long in spanning months or years
- Deep in theory-relevant variables

LearnSphere: Integrate across data repositories toward answering questions

We need a education data infrastructures to integrate analytic methods => produce discoveries not possible within current data silos

Cognitive Tutors Example source of educational data

My current cell phone company charges me \$14.95 per month for service and \$.13 per minute. PPS Cellular Phone Company has offered me \$15.00 worth of free calls a month if I switch, but the charge is \$.39 per minute.

Real World Impact of Cognitive Science

Algebra Cognitive Tutor

- Widespread intensive use
 ~600K students per year
 ~80 minutes per week
- Many field trials =>
 Student learning
 is 2x better
- Still:

 Could do better
 Too many decisions
 driven by intuition

Koedinger, Anderson, Hadley, & Mark (1997).
Intelligent tutoring goes to school in the big city.

Pane et al. (2013). Effectiveness of Cognitive Tutor Algebra I at Scale. Santa Monica, CA: RAND Corp.

Social-technical infrastructure to discover conditions that cause *robust learning*

Ed tech + wide us

wide use = "Basic research at scale"

Since 2004 > 680 ed tech data sets in DataShop

> 320 *in vivo* experiments

Koedinger et al. (2012). The Knowledge-Learning-Instruction (KLI) framework: Bridging the science-practice chasm to enhance robust student learning. *Cognitive Science*.

a data analysis service for the learning science community

http://learnlab.org/datashop

Help

Explore

Public Datasets

Private Datasets

External Tools

What can I do?

Learn More

Documentation About DataShop Welcome to DataShop, the world's largest repository of learning interaction data.

Create an account

Log in

or

to start analyzing data.

What can I do with DataShop?

Upload a dataset

Integrate across data repositories to answer questions

- Many complex open questions about the nature of:
 - Knowledge & cognition
 - Learning, metacognition
 - Motivation, & self-regulation
 - Instruction
- Need to work together to tackle these complex issues
 - Need to build on existing cognitive, social, education theory

Koedinger et al. (2012). The Knowledge-Learning-Instruction (KLI) framework. *Cognitive Science*.

Many other choices: animations vs. diagrams vs. not, audio vs. text vs. both, ...

Koedinger, Booth, Klahr (2013). Instructional Complexity and the Science to Constrain It. *Science*.

 $>3^{15*2} = 205$ trillion options!

Automated support for cognitive task analysis: Discovering *hidden skills* using educational data

Cen, H., Koedinger, K., Junker, B. (2006). Learning Factors Analysis: A general method for cognitive model evaluation and improvement. 8th International Conference on Intelligent Tutoring Systems.

Koedinger, McLaughlin, & Stamper (2012). Automated student model improvement. In *Proceedings of the Fifth International Conference on Educational Data Mining*. [Conference best paper.]

Koedinger, Stamper, McLaughlin, & Nixon. (2013). Using data-driven discovery of better student models to improve student learning. *Proceedings of Artificial Intelligence in Education*.

Learning is complex: Variations in task domains, knowledge demands, student characteristics

- Learning curves showing a decrease in error rate (y-axis) for each successive opportunity (x-axis) to learn
- Averaged across students for different skills MORE variable

Averaged across skills for different students – LESS variable

What causes these variations?

Turning Discovery into Better Learning

High rough curve

- => hidden skill
- => redesign instruction
- => Experiment

Better student learning!

Koedinger, Stamper, McLaughlin, & Nixon. (2013). Using data-driven discovery of better student models to improve student learning. *Proceedings of Artificial Intelligence in Education*.

LearnSphere: Integrate across data repositories toward answering questions

We need a education data infrastructures to integrate analytic methods => produce discoveries not possible within current data silos

Data Integration Example:

MOOC + OLI = Insight
What student choices associate
with most learning?

Koedinger et al. (2015). Learning is Not a Spectator Sport: Doing is Better than Watching for Learning from a MOOC. *Proceedings of Learning at Scale.*

Primary Suggestion for Action: Do data intensive research at our own universities

- Get college instructors involved!
 - Design course activities to collect data
 - Share data & seek analysis partners
 - Engage in discipline-based ed research
- Demonstrate success
 - Set a model for K12
- Incentives
 - NSF fund college-level data-driven innovation
 - Researchers enforce data reuse citation

Thank you!

Thanks to >200 researchers that have contributed!!

http://learnlab.org/DataShop

Ken Koedinger koedinger@cmu.edu

Extras

Cognitive Model Discovery: From qualitative to quantitative

Traditional Cognitive Task Analysis

- Interviews or think alouds of experts & students
- Result: Cognitive Model of expert/student thinking
 - Experts aware of only ~30% of what they know
- Greatly improves instruction (~1.5 effect size, Clark et al)

Data-driven Cognitive Task Analysis

- Use student data from initial tutor
- Goal: more reliable & cost effective
- Employ machine learning & statistics to discover better cognitive models

Use data to develop models of learners – because intuition is faulty!

Which is harder for algebra students?

Story Problem

As a waiter, Ted gets \$6 per hour. One night he made \$66 in tips and earned a total of \$81.90. How many hours did Ted work?

Word Problem

Starting with some number, if I multiply it by 6 and then add 66, I get 81.90. What number did I start with?

Equation

x * 6 + 66 = 81.90

Math educators say: story or word is hardest

Students: equations are hardest

Expert blind spot!

Algebra teachers, especially, incorrectly think equations are easy

Discovering a new knowledge component

- Each KC should have:
 - smooth learning curve
 - statistical evidence of learning
 - even error rates across tasks
- Find a feature common to hard tasks but missing in easy ones

KC Name	Intercept	Slope
circle-area	0.58	0.068
compose-by-addition	0.74	0
compose-by-mult	0.6	0.114
pentagon-area	0.37	0.110
trapezoid-area	0.35	0.091

Geometry Tutor Scaffolding problem decomposition

Problem decomposition support

New model discovery: Split "compose" into 3 skills

- Hidden planning knowledge:
 If you need to find the area of an irregular shape, then try to find the areas of regular shapes that make it up
- Redesign instruction in tutor
 - Design tasks that isolate the hidden planning skill
 - Given square & circle area, find leftover

When prompts are initially present for component areas

3-way split in new model (green) better fits variability in error rates than original (blue)

Where to go from here?

Possible partnerships/collaborations/relationships to pursue Cyberlearning advances through data sharing?

Analyses that span levels of analysis

Key needs to be both effective & legal

- Data sharing cyberinfrastructure
 - Easy to use
 - Layered & managed access
 - Rigorous privacy review: IRB+
- Researcher incentives for sharing
 - Sticks: Funder requirements, journal requirements
 - Carrots: Data citation, badges, shared data/analytics counts toward tenure

What's needed in Cyberlearning data partnerships?

As many as possible of:

- Shared datasets with
 - long-term robust learning & life outcomes
 - multiple assessments: performance, standardized, future learning
 - fine-grain, wide, & deep click data
 - fine-grain, wide, & deep verbal data
 - embedded experiments: 1 or more random variations
- Analytics sharing with easy to
 - access existing analytics
 - apply analytics to full space of Cyberlearning data sources
 - Online courses, simulations, games, tutors, inquiry, class video, ubiquitous computing...
 - recombine existing analytics without programming
 - contribute new analytics & new workflows
- Teams with compatible goals
 - interdisciplinary: education, computer science, psychology, economics ...
 - instructors drive research goals
- OTHERS???

Big Data for Learning Conclusions

- Big data can help unlock mysteries of human learning
 - Science & technology to support learning will transition from Model T to Jet Airplane
- Not the "big" that is important
 - Natural collection: tall, wide, fine, long, deep
- Future: Big data partnerships to tackle big interdisciplinary education questions

Five Recommendations

- 1. Search in the "function space"
- 2. Experimental tests of instructional function decomposability
- 3. Massive online multifactor studies
- 4. Learning data infrastructure
- 5. School-researcher partnerships