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Big Data for education 
More important than “big” 
•  Collected as part of natural activities 
•  Affords experimentation, “A/B testing” 

Many dimensions of “big” 
•  Tall in number of participants (students) 
•  Wide in observations per participant (student) 
•  Fine in frequency of observation 
•  Long in spanning months or years 
•  Deep in theory-relevant variables 
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LearnSphere: Integrate across data 
repositories toward answering questions    

We need a education data infrastructures to integrate analytic methods  
=> produce discoveries not possible within current data silos 
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Personalized instruction 

Challenging questions 

… individualization 

Progress… 
Authentic problems Feedback within complex solutions 

Cognitive Tutors  
Example source of  
educational data 



5 Pane et al. (2013). Effectiveness of Cognitive Tutor 
Algebra I at Scale. Santa Monica, CA: RAND Corp.  

Real World Impact of 
Cognitive Science 

 Algebra Cognitive Tutor 
•  Widespread intensive use 

~600K students per year  
~80 minutes per week 

•  Many field trials => 
Student learning  
is 2x better 

Koedinger, Anderson, Hadley, & Mark (1997).  
Intelligent tutoring goes to school  in the big city. 

•  Still: 
Could do better 
Too many decisions  
driven by intuition 

Cognitive Tutor Algebra 

Traditional Algebra Course 
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Social-technical infrastructure to discover 
conditions that cause robust learning 

+	
  

Researchers 

Learn 
Lab 

Schools Since 2004 
> 680 ed tech data 
sets in DataShop 

> 320 in vivo 
experiments 

Koedinger et al. (2012).  The Knowledge-
Learning-Instruction (KLI) framework:  
Bridging the science-practice chasm to enhance 
robust student learning. Cognitive Science. 
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680 data sets 
math, science, language …  
K12 & college 

h3p://learnlab.org/datashop	
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Integrate across data 
repositories to answer questions 

•  Many complex open questions 
about the nature of: 
– Knowledge & cognition 
– Learning, metacognition 

• Motivation, & self-regulation 

–  Instruction 

•  Need to work together to 
tackle these complex issues 
– Need to build on existing 

cognitive, social, education 
theory 

Koedinger et al. (2012).  The Knowledge-
Learning-Instruction (KLI) framework. 
Cognitive Science. 
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Instructional 
Complexity 
=> Need for data 

What’s best? 

Focused 
practice 

Distributed 
practice 

Study 
examples 

Test on 
problems 

50/50
Mix 

Concrete Abstract Mix 

Delayed No 
feedback 

Immediate 

Block topics 
in chapters 

Interleave 
topics Fade 

Explain Ask for 
explanations 

Mix 

Many other choices: animations vs. diagrams vs. not, audio vs. text vs. both, … 

Gradually 
widen 

Study Test 50/50 Study Test 50/50 Study 

Concrete Abstract Mix 

Immediate No 
feedback Delayed 

Block topics 
in chapters Fade Interleave 

topics 

Explain Ask for 
explanations 

Mix 

More help 
Basics 

More challenge 
Understanding 

>315*2 = 205 trillion options! Koedinger, Booth, Klahr (2013).  Instructional Complexity 
and the Science to Constrain It. Science. 
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Automated support for 
cognitive task analysis: 
Discovering hidden skills 
using educational data 

Cen, H., Koedinger, K., Junker, B. (2006).  Learning Factors Analysis: A general 
method for cognitive model evaluation and improvement. 8th International 
Conference on Intelligent Tutoring Systems.	



Koedinger, McLaughlin, & Stamper (2012). Automated student model 
improvement. In Proceedings of the Fifth International Conference on 
Educational Data Mining. [Conference best paper.] 

Koedinger, Stamper, McLaughlin, & Nixon. (2013). Using data-driven 
discovery of better student models to improve student learning. Proceedings 
of Artificial Intelligence in Education. 
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Learning is complex: Variations 
in task domains, knowledge 
demands, student characteristics 
•  Learning curves showing a decrease in error rate (y-axis) for 

each successive opportunity (x-axis) to learn 
•  Averaged across students for different skills – MORE variable 
•    

•  Averaged across skills for different students – LESS variable 

•  What causes these variations? 
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!

Turning Discovery into 
Better Learning 

High rough curve  
=> hidden skill 
=> redesign instruction 
=> Experiment  
Better student learning! 
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Koedinger, Stamper, McLaughlin, & Nixon. (2013). Using data-driven 
discovery of better student models to improve student learning. 
Proceedings of Artificial Intelligence in Education. 
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LearnSphere: Integrate across data 
repositories toward answering questions    

We need a education data infrastructures to integrate analytic methods  
=> produce discoveries not possible within current data silos 
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Go	
  to	
  LearnSphere.org!	
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Data	
  Integra0on	
  Example:	
  
MOOC	
  +	
  OLI	
  =	
  Insight	
  	
  
What	
  student	
  choices	
  associate	
  	
  
with	
  most	
  learning?	
  

Learning	
  by	
  doing	
  	
  
>	
  6x	
  be3er	
  than	
  
learning	
  by	
  watching!!	
  

Koedinger et al. (2015). Learning is Not a Spectator Sport: 
Doing is Better than Watching for Learning from a MOOC. 
Proceedings of Learning at Scale. 
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Primary Suggestion for Action: 
Do data intensive research at 
our own universities 
•  Get college instructors involved! 

–  Design course activities to collect data 
–  Share data & seek analysis partners 
–  Engage in discipline-based ed research 

•  Demonstrate success 
–  Set a model for K12 

•  Incentives 
–  NSF fund college-level data-driven innovation 
–  Researchers enforce data reuse citation 
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Thank you!  

Thanks to >200 researchers that have contributed!! 

http://learnlab.org/DataShop    

Ken Koedinger 
koedinger@cmu.edu 
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Extras 
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Cognitive Model Discovery: 
From qualitative to quantitative 
Traditional Cognitive Task Analysis 
•  Interviews or think alouds of experts & students 
•  Result: Cognitive Model of expert/student thinking 

–  Experts aware of only ~30% of what they know  
•  Greatly improves instruction  

(~1.5 effect size, Clark et al) 

Data-driven Cognitive Task Analysis 
•  Use student data from initial tutor 
•  Goal: more reliable & cost effective 
•  Employ machine learning & statistics to discover better cognitive 

models 
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Use data to develop models of 
learners – because intuition is faulty! 

Which is harder for algebra students? 

Story Problem 

As a waiter, Ted gets $6 per hour.  
One night he made $66 in tips and 
earned a total of $81.90.  How many 
hours did Ted work?  

Word Problem 

Starting with some number, if I 
multiply it by 6 and then add 66, I get 
81.90.  What number did I start with? 

Equation 

x * 6 + 66 = 81.90 

Math educators say:  
story or word is hardest  

Expert blind spot! 
Algebra teachers, especially, 
incorrectly think equations are easy 

Students: 
equations 
are hardest 

Koedinger & Nathan (2004). The real story behind story problems: 
Effects of representations on quantitative reasoning. Learning Science. 
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Cognitive Task Analysis 
using DataShop’s 
learning curve tools 

Without decomposition, using just 
a single “Geometry” KC, 

Upshot: Can automate analysis & 
produce better student models 

But with decomposition, 12 
KCs for area concepts, 

a smoother learning curve. 

no smooth learning curve. 
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1. Not smooth 

2. No learning 

3. Uneven error rate 

Easy tasks do not 
require subgoals, hard 
tasks do! 

Discovering a new knowledge 
component 
•  Each KC should 

have: 
–  smooth learning curve 
–  statistical evidence of 

learning 
–  even error rates 

across tasks 
•  Find a feature 

common to hard 
tasks but missing in 
easy ones 
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Geometry Tutor  
Scaffolding problem decomposition 

Problem 
decomposition 
support 
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New model discovery: Split 
“compose” into 3 skills 

•  Hidden planning knowledge:  
If you need to find the area of an irregular shape, then 
try to find the areas of regular shapes that make it up 

•  Redesign instruction in tutor 
–  Design tasks that isolate the hidden planning skill 
–  Given square & circle area, find leftover 

1 

2 

When 
prompts 
are initially 
present for 
component 
areas  

3 



25 

3-way split in new model (green) 
better fits variability in error rates 
than original (blue)  
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Where to go from here? 

Possible partnerships/collaborations/relationships to 
pursue Cyberlearning advances through data sharing? 
•  Analyses that span levels of analysis 

Key needs to be both effective & legal 
•  Data sharing cyberinfrastructure 

–  Easy to use 
–  Layered & managed access 
–  Rigorous privacy review: IRB+ 

•  Researcher incentives for sharing  
–  Sticks: Funder requirements, journal requirements 
–  Carrots: Data citation, badges, shared data/analytics counts 

toward tenure 
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What’s needed in Cyberlearning 
data partnerships? 
As many as possible of: 
•  Shared datasets with  

–  long-term robust learning & life outcomes 
–  multiple assessments: performance, standardized, future learning 
–  fine-grain, wide, & deep click data 
–  fine-grain, wide, & deep verbal data 
–  embedded experiments: 1 or more random variations 

•  Analytics sharing with easy to 
–  access existing analytics 
–  apply analytics to full space of Cyberlearning data sources 

•  Online courses, simulations, games, tutors, inquiry, class video, ubiquitous computing… 

–  recombine existing analytics without programming 
–  contribute new analytics & new workflows 

•  Teams with compatible goals 
–  interdisciplinary: education, computer science, psychology, economics … 
–  instructors drive research goals 

•  OTHERS??? 



28 

Big Data for Learning Conclusions 

•  Big data can help unlock mysteries of 
human learning   
– Science & technology to support learning  

will transition from Model T to Jet Airplane 

•  Not the “big” that is important 
– Natural collection: tall, wide, fine, long, deep 

•  Future: Big data partnerships to tackle big 
interdisciplinary education questions 
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Five Recommendations 

1. Search in the “function space” 
2. Experimental tests of instructional 

function decomposability 
3. Massive online multifactor studies 
4. Learning data infrastructure 
5. School-researcher partnerships 

Koedinger, Booth, Klahr (2013).  Instructional Complexity 
and the Science to Constrain It. Science. 


