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Three ingredients for Machine Learning
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Experimental, Observational, and

Simulation Data in Science
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Superhuman “sensors” for science

700 GB/sec in 2018
9000x faster than 2008

Reselytion \ \

Sefore 2002

Berkeley Lab advances detector technology for many fields of science, including (above
CryoEM) biology, cosmology, material science, physics, and more.
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Machine Learning in Science

Cosmology, Climate, Cats, Catalysts and
Carrots




Cosmology: Finding Features in Images

EEEEEEEEEE OF Oﬂ:lce Of

Z\‘ U.Ss.
%e%!f EN ERGY Science




Understanding from Observation + Simulation
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Science is about
understanding

Use simulations to
interpret observations
ML (reduced order
models) to accelerate
simulation “campaign”
Using DL to improve
cosmological constants
from simulations

CosmoFlow on TensorFlow:
Trained on 8K nodes, 10 min

Shirley Ho (Physics), Debbie Bard (NERSC)




Features in Simulation: 3D, 4D, Adaptive, Unstructured
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Machine Learning in Climate Data

Classification ; Instance
Classification + Localization Object Detection Segmentation

Contributors: Prabhat, Thorsten Kurth, Jian Yang, loannis Mitliagkas, Chris Pal, Nadathur Satish, Narayanan
Sundaram, Amir Khosrowshahi, Michael Wehner, Bill Collins.

n/,_:}m Kj EﬁMERmREEFY g:;iecr?cc;f Machine Learning for Science

BERKELEY LAB S




Deep Learning at 250 PF for Extreme Weather Events

Ground Truth vs Prediction Use of deep learning (CNNs)

e Supervised and semi-supervised learning on CAM5 data
* 85-99% accuracy at identifying extreme climate events
e Scaled to 250PF on Summit at ORNL; trained in 100 minutes
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Material design with computation

Given an atomic ...use quantum theory ...where the electrons are...
structure, and supercomputers to
determine...

H|y) = E[y)

...and what the electrons are doing.
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Recognizing Motifs in 3D Materials Structures
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TRAIN

A network with 3D translation-
and 3D rotation-equivariance

Tess Smidt




Multimodal data in agriculture

The ARI1K Field Lab
- o Climatic variables (temp., H20)

—— - Macro/micro-nutrient variables
Sat. Imaging (émres.)
Frequent soil sampling
Continuous in situ monitoring
Semiweekly UAV hyperspectral
GPS localized fertilizer/pesticide data
GPS localized yields ($/acre)
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Learning Mechanistic Models

EC

Soil Types (soil/salinity/moisture)
. i

P oK Iterative Random Forest
Breaking dimensionality curse
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e Construct a 4D Virtual Farmland (X0 X Xt} |

* Feature selection /\
* Hyperspectral phenotypes (xexy ) XXy
* Microbes/metabolites impacts /\

* Desigh microbial amendments (%X ) (X, X0 X0}

Basu et al. 2018. PNAS.
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Large-scale microbiome genomic analysis
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Metagenome Assembly

* Thousands of species
mixed, with errors

* No reference

« HPC MetaHipMer assembly
puts the pieces together

e 2.8 TB Twitchell Wetlands -
- largest of its kind?
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Cluster gene/protein families at scale

Input: pairwise similarities Output: clusters of
between proteins (sparse) similar proteins
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* Desired scale: 10s of billions of genes/proteins, trillions of
nonzero pairwise similarities (“all metagenomes”)

* Today: 282M genes in 3 hours on 2K nodes
HipMCL work by Aydin Bulug (ECRP) and Ariful Azad
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Learn the relationship between
features with Graphical Model
Estimator

ey B ps://media4.s-nbcn;ys.com/i/newscm5/2017_25/9R/§459/150601-dna-st]{an%-mn-
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HPC Graphical Model Estimator Discovers Regions

and Co-regions

Automatic parcellation from fMRI Baseline parcellation from Glasser
data alone [Glasser et al. 2016]

controlling the eyes

listening
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Al =048, A2 =030, ¢=3, receiving info from the
% of best score = 100 senses

First of kind analysis at this scale using new algorithm and high

performance computing at LBNL
Koanantakool, Oh, Buluc, Morozov, Oliker, Yelick, AISTAT 2018.
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Energy science from embedded sensors

Transportation

Use physics-based simulations, augmented with precise, localized
data-driven models

U.S. DEPARTMENT OF Office of Exascale Science
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Tempered Enthusiasm for Machine Learning

(Especially Deep Learning) in Science




ML Explainability is not the same as Performance

Learning Techniques (today)

Neural Nets I
ﬁraphical
Models
Deep e bl
Learnin - nsemboie
g Baye3|an Methods
Belief Nets —
SRL “Ra
CRFs HBNs

AOGs

Statistical MLN

Models

Markov
SVMs Trees
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Image from DARPA’s XAl Program, David Gunning
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Non-actionable correlation

r~ 0.81

Office of

U.S. DEPARTMENT OF



Correlation is not Causation

r~ 0.99
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Filtering, De-Noise and Curating Data

AmeriFlux & FLUXNET: 750

users access carbon sensor data

from 960 carbon flux data years Arno Penzias and Robert Wilson discover
Cosmic Microwave Background in 1965
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Machine Learning in Science

Excitement over many uses of ML for:

Feature extractions from observations, experiments,
and simulations

Clustering and regression
Dimensionality reduction for complex data

Surrogate models to approximate expensive
simulations or experiments

Designing and controlling experiments
Filling in missing models in simulations

A robust peer review process in science domains and
great training opportunities on open science data
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