Finding a Research Topic &
Interdisciplinary Research

Armando Solar-Lezama, CSAIL, MIT
Gonzalo Ramos, Microsoft Research

based on Melanie E. Moses’ slides

2019 CRA URMD Grad Cohort Workshop

Armando Solar-Lezama

Moved to the US with my family from Mexico when | was 15

BS from Texas A&M University, PhD from UC Berkeley

Faculty at MIT since 2008

Work on Programming Systems + X

Gonzalo Ramos

- From Argentina

- MS, PhD in CS, University of Toronto, Canada

- Scientist, Microsoft Live Labs; OSD (2007-2013)

- Sr Design Technologist - Amazon Concept Lab (2013-2015)
- Sr UX Scientist - Amazon Grand Challenges (2015-2016)

- Sr Researcher - Microsoft Research Al

The Finding Path

Finding & Changing...

“Find a place you trust, and then try trusting it for awhile."
John Cage and Sister Corita Kent

Identifying a research topic is equal parts asking questions

about the world, and yourself.

It is often does not resemble a straight line.

Do investments, Also be ready to change.

It is ultimately personal, not two are the same

Research Journeys...

The uncompromising vision.

“My goal is (grand and) clear. My steps unwavering.”

The opportunistic explorer.

“| see an array of possibilities. | choose and change when appropriate.”
The problem solver.

“| see something | know how to fix. | learn by doing.”

Yours!

“your story goes here...”

"5 CRA
Computing Researct
Association

Strategies and
Learning to Ask Questions

Don't try to create and analyze at the same time.
They're different processes.

John Cage and Sister Corita Kent

Finder’s Strategies

"Always be around. Come or go to everything. Always go to
classes. Read anything you can get your hands on. Look at

movies carefully, often. Save everything.”
John Cage and Sister Corita Kent

- What are you passionate about?
- What are your values?

- How do these guide you & fit?

“ CRA
Computing Researct
Association

Beware of the Hype...

Peak of Inflated
Expectations

Plateau of
Productivity

Expectations

Innovation Trough of
Trigger Disillusionment
Time

\
CRA
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle ﬁg;"g’ci“;i?fn““m'

Tips Along the Way

The journey of a student is individual.
The journey of a researcher is collective.
Envision success, and work backwards from it into metrics,
and milestones.
- Try the press-release approach.
- What do you bring to the table?

Asses resources and knowledge/skills gap

“ CRA
Computing Researct
Association

Interdisciplinary Research

Finding Interdisciplinary Topics

In my field (HCI), almost all work is interdisciplinary.
Go out and learn about...
- people and their problems.
- a new technology that has not been applied before.
- what you can give.
Take advantage of the challenge of being not exactly where
you planned.
Try explaining what you do to others in different fields, learn

“ CRA
Computing Researct
Association

their perspective.

Advising Interdisciplinary Topics

One, two or more advisors and mentors?

Do they appropriately balance breadth vs depth of research?
Do they have a core identity that supports or overlaps with
yours?

Are they open-minded and enthusiastic about learning from
other fields?

Can they provide financial support for interdisciplinary
research?

Will you find a community of researchers that support your

"5 CRA
Computing Researct
Association

work?

Case Studies

Towards Optimization-Safe Systems:
Analyzing the Impact of Undefined Behavior

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama
MIT CSAIL

Abstract

This paper studies an emerging class of software bugs
called optimization-unstable code: code that is unexpect-
edly discarded by compiler optimizations due to unde-
fined behavior in the program. Unstable code is present
in many systems. including the Linux kernel and the Post-
gres database. The consequences of unstable code range
from incorrect functionality to missing security checks.

To reason about unstable code, this paper proposes
a novel model, which views unstable code in terms of
optimizations that leverage undefined behavior. Using
this model, we introduce a new static checker called Stack
that precisely identifies unstable code. Applying Stack
to widely used systems has uncovered 160 new bugs that
have been confirmed and fixed by developers.

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)
return; /* len too large */
if (buf + len < buf)
return; /* overflow, buf+len wrapped around */
'* write to buf[@..len-1] */

Figure 1: A pointer overflow check found in several code bases.
The code becomes vulnerable as gee optimizes away the second if
statement [13].

unstable code happens to be used for security checks, the
optimized system will become vulnerable to attacks.
This paper presents the first systematic approach for
rcasoning about and dctecting unstable code. We imple-
ment this approach in a static checker called Stack. and
" _L M N 1 H

O)

Managing Performance vs. Accuracy Trade-offs With Loop
Perforation

Stelios Sidiroglou

Sasa Misailovic

Henry Hoffmann

Martin Rinard
Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technology
{stelios,misailo,hank,rinard}@csail.mit.edu

ABSTRACT

Many modern computations (such as video and audio encoders,
Monte Carlo simulations, and machine learning algorithms) are de-
signed to trade off accuracy in return for increased performance.
To date, such computations typically use ad-hoc, domain-specific
techniques developed specifically for the computation at hand.
Loop perforation provides a general technique to trade accu-
racy for performance by transforming loops to execute a subset
of their iterations. A criticality testing phase filters out critical
loops (whose perforation produces unacceptable behavior) to iden-
tify runable loops (whose perforation produces more efficient and
still acceptably accurate computations). A perforation space explo-
ration algorithm perforates combinations of tunable loops to find
Pareto-optimal perforation policies. Our results indicate that, for a
range of applications, this approach typically delivers performance
increases of over a factor of two (and up to a factor of seven) while
changing the result that the application produces by less than 10%.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

This paper presents and evaluates a technique, loop perforation,
for generating new variants of computations that produce approx-
imate results. These variants occupy different points in the under-
lying performance vs. accuracy tradeoff space. Our results show
that perforating appropriately selected loops can produce signifi-
cant performance gains (up to a factor of seven reduction in overall
execution time) in return for small (less than 10%) accuracy losses.
Our results also show that the generated variants occupy a broad
region of points within the tradeoff space, giving users and systems
significant flexibility in choosing a variant that best satisfies their
needs in the current usage context.

1.1 Loop Perforation

Loop perforation transforms loops to execute a subset of their
iterations. The goal is to reduce the amount of computational work
(and therefore the amount of time and/or other resources such as
power) that the computation requires to produce its result. Of course,
perforation may (and in our experience, almost always does) cause
the computation to produce a different result. But approximate
computations can often tolerate such changes as long as they do
not unacceptably reduce the accuracy. Our implemented system
uses the following techniques to find effective perforations:

A new approach to

achieve something
that has never been
achieved before.

Programming by Sketching for Bit-Streaming Programs

Armando Solar-Lezama!

! Computer Science Divi

Rodric Rabbah?

Rastislav Bodik! ~ Kemal Ebcioglu®

ion. University of California. Berkeley

2Computer Science and Arnﬁcml Intelligence Laboratory. Massachusetts Institute of Technology
3T.J. Watson Research Center. IBM C orporation

{asolar, bodik}@cs.berkeley.edu, rabbah@mit.edu, kemal@us.ibm.com

Abstract

This paper introduces the concept of programming with sketches.
an approach for the rapid development of high-performance ap-
plications. This approach allows a programmer to write clean and
portable reference code. and then obtain a high-quality implemen-
tation by simply sketching the outlines of the desired implemen-
tation. Subsequently. a compiler automatically fills in the missing
details while also ensuring that a completed sketch is faithful to
the input reference code. In this paper. we develop StreamBit as
a sketching methodology for the important class of bit-streaming
programs (¢.g.. coding and cryptography).

Asketchisa par tial specification of the unplememanou and as
such, it affords several benefits to programmer in terms of produc-
tivity and code robustness. First. a sketch is easier to write com-
pared to a complete implementation. Second. sketching allows the
programmer to focus on exploiting algorithmic properties rather
than on orchestrating low-level details. Third. a sketch-aware com-
piler rejects “buggy™ sketches. thus improving reliability while al-
lowing the programmer to quickly evaluate sophisticated imple-
mentation ideas.

1. Introduction

Applications in domains like cryptography and coding often have
the need to manipulate streams of data at the bit level. Such ma-
nipulations have several properties that make them a particularly
challenging domain from a developer’s point of view. For exam-
ple. while bit-level specifications are typically simple and concise,
their word-level implementations are often daunting. Word-level
implementations are essential because they can deliver an order of
magnitude speedup. which is important for servers where security-
related processing can consume up to 95% of processing capac-
ity [20]. Converting bit-level implementations to word level imple-
mentations is akin to vectorization, but the characteristics of bit-
streaming codes render vectorizing compilers largely ineffective.
In fact. widely used cipher implementations often achieve perfor-
mance thanks to algorithm-specific algebraic insights that are not
available to a compiler.

Additionally. correctness in this domain is very important be-
cause a buggy cipher may become a major security hole. In 1996,
a release of the BlowFish cipher contained a buggy cast (from un-
signed to signed characters) which threw away two thirds of the

Good problem
selection will only
take you so far.

Programming by Sketching for Bit-Streaming Programs

Armando Solar-Lezama!

! Computer Science Divi

Rodric Rabbah?

Rastislav Bodik! ~ Kemal Ebcioglu®

ion. University of California. Berkeley

2Computer Science and Arnﬁcml Intelligence Laboratory. Massachusetts Institute of Technology
3T.J. Watson Research Center. IBM C orporation

{asolar, bodik}@cs.berkeley.edu, rabbah@mit.edu, kemal@us.ibm.com

Abstract

This paper introduces the concept of programming with sketches.
an approach for the rapid development of high-performance ap-
plications. This approach allows a programmer to write clean and
portable reference code. and then obtain a high-quality implemen-
tation by simply sketching the outlines of the desired implemen-
tation. Subsequently. a compiler automatically fills in the missing
details while also ensuring that a completed sketch is faithful to
the input reference code. In this paper. we develop StreamBit as
a sketching methodology for the important class of bit-streaming
programs (¢.g.. coding and cryptography).

Asketchisa par tial specification of the unplememanou and as
such, it affords several benefits to programmer in terms of produc-
tivity and code robustness. First. a sketch is easier to write com-
pared to a complete implementation. Second. sketching allows the
programmer to focus on exploiting algorithmic properties rather
than on orchestrating low-level details. Third. a sketch-aware com-
piler rejects “buggy™ sketches. thus improving reliability while al-
lowing the programmer to quickly evaluate sophisticated imple-
mentation ideas.

1. Introduction

Applications in domains like cryptography and coding often have
the need to manipulate streams of data at the bit level. Such ma-
nipulations have several properties that make them a particularly
challenging domain from a developer’s point of view. For exam-
ple. while bit-level specifications are typically simple and concise,
their word-level implementations are often daunting. Word-level
implementations are essential because they can deliver an order of
magnitude speedup. which is important for servers where security-
related processing can consume up to 95% of processing capac-
ity [20]. Converting bit-level implementations to word level imple-
mentations is akin to vectorization, but the characteristics of bit-
streaming codes render vectorizing compilers largely ineffective.
In fact. widely used cipher implementations often achieve perfor-
mance thanks to algorithm-specific algebraic insights that are not
available to a compiler.

Additionally. correctness in this domain is very important be-
cause a buggy cipher may become a major security hole. In 1996,
a release of the BlowFish cipher contained a buggy cast (from un-
signed to signed characters) which threw away two thirds of the

Group Activity

Short exercise

Draft Your Research Press Release

 What is the problem?

 Who is the person it affects?

* What is the proposed solution?

 How does the solution work?

 What is the Research Plan?

* The steps that take us from now to solving the problem

"5 CRA
Computing Researct
Association

Summary

Take home ideas

“The closest path between two points is not a straight line.

It is the path you krew find”.

Know yourself.

Be curious.

Connect with others.

Have goals, until you find better ones.

Be ready to change.

"5 CRA
Computing Researct
Association

