Masters vs. PhD

Russ Joseph, Northwestern University C. J. Taylor, University of Pennsylvania

Adapted from slides by

Rita H. Wouhaybi, Intel Labs Bushra Anjum, Amazon Kim Hazelwood, Facebook

Who am I?

Russ Joseph

From: St. Thomas, USVI

Education:

- BS Carnegie Mellon
- PhD Princeton

Now: Associate Professor, Northwestern

Research:

 Computer Architecture (Power/Reliability Aware Systems)

Fun:

- Running (Eight Marathons)
- Golf

Revisiting Choices

Nearing the end of your first year of graduate school, you have some questions to ask:

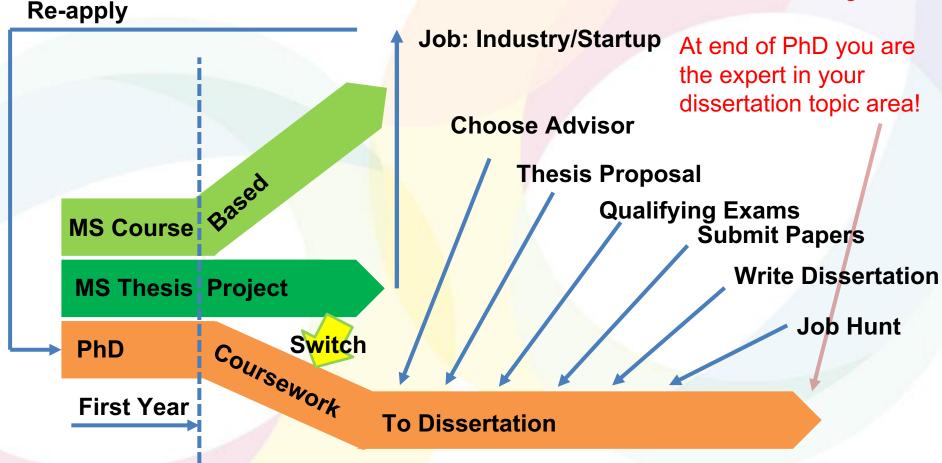
- Am I in the best program for me?
- You've had a year under your belt, ask yourself:
 - What do I want from the graduate school experience?
 - Likes?
 - Dislikes?
 - What do I want as a future career path?
- If not, then how do I get to my preferred track?
 - An opportunity to course correct

Exercise: Turn And Talk To Your Neighbor

- A. What is your plan? MS or PhD?
- B. What do you want from the graduate school experience?
 - Likes?
 - Dislikes?
- c. What do you want as your future career path?

Who's in the audience?

How many currently in master's programs?


- Course masters?
- Thesis masters?

How many in PhD programs?

Grad School Paths

Research is production of new knowledge

Job: Industry/Startup/ Lab/Academia

Program Comparison

	Course Based MS	Research MS	PhD
Educational Goals	Acquire knowledge via coursework	 Acquire depth & project skills (thesis) Get taste of research 	 Do original high- impact research Learn skills for more research Expert-level knowledge
Program	 Courses are more deep Short time (job hunt) Networking opportunities 	 Research is not as deep as PhD Shorter commitment Less publications/impact 	Long process

Paying For Your Degree

PhD: Generally fully funded by university

- Support for students in "good academic standing"
 - Maintain GPA, Find advisor, Pass quals, Make research progress
- Mixture of fellowship (internal/external), research assistantship (grants), teaching assistantship (departmental)

MS: Generally student supported

- Most programs: student finances studies
- Other options:
 - Fellowships (internal/external), student loans
 - Employer sponsorship (full/partial)

Financial support mechanisms

Research Assistantship: Work on research project (hopefully contributes to your thesis) funded by external agency...need to show results!

Teaching Assistantship: Work as teaching staff (grade, help students, occasionally lecture) funded by department/university...need to juggle teaching with your own work.

Fellowship (Internal/External): Focus on your academics (research/courses)...no other commitments.

Fellowships

- Even if your advisor has plenty of research funding...
- Apply for fellowships whenever you can:
 - Gives you more freedom
 - Upgrades your CV
 - May come with other perks (e.g. internship)
- Where to apply? Look high and low:
 - Government: National Science Foundation (NSF), Department of Energy (DOE), ...
 - Major corporations: Google, Facebook, IBM, Intel, Microsoft, ...
 - Other: Ford Foundation, GEM, Hertz

MS: Course vs. Research

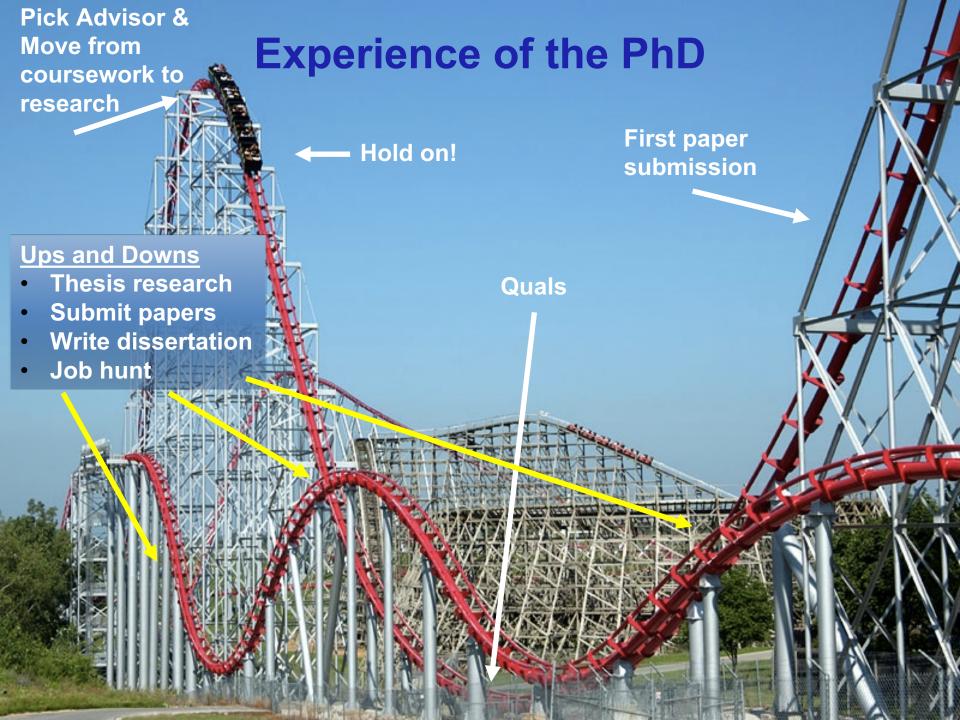
Course Masters

- Breadth of knowledge may qualify you for marketing, project management roles
- If that's what you want, take some business classes!
- Lack of major project may be handicap for development roles

Research Masters

- Deep project may qualify you for more interesting development roles
- Much more attractive for a research lab position
- Thesis will help with publications

MS Career Opportunities


- Types of Jobs
 - Operations and IT type jobs (non-tech industry)
 - Product or application development
 - Research support (Contribute to prototyping and publications)
- Employers
 - Information Technology (IT) companies
 - Companies in other industries
 - Universities (Typically in support roles)

PhD Career Opportunities

- Research or advanced development in industrial research labs
- Development leadership roles in industry
- Technical project management/leadership
- Academic research and teaching in a university as a professor

Lessons from the Roller Coaster

- The ride is similar for most people
 - You are qualified for the ride. It's scary for everyone!
 - You aren't alone. Share your experiences!
- It takes externally applied energy for the uphills
 - Your advisor will be a key person (later session on this)
 - Seek support from many sources (technical, emotional)
- There are a lot of downhill sections
 - Frustration and doubt are guaranteed...
 - Things can/will go wrong!
- Momentum is important
 - Keep moving forward!
 - No side trips to distract!

Technical Ladder Example

	Example Title	Contribution and Impact	Expertise
	Fellow/Senior Fellow	Multiple product lines or technologies	Top tech leadership impacts the industry
	Principal Engineer/Senior PE	Group product line or technology	Technical authority, impacts a business
	Senior Staff Engineer	Multiple products	Project-wise expert, Impacts a product
PhD =	Research Scientist	Product, Project Methods	Expert in area of contribution
MS 🗪	Senior Engineer	Portion of a Product/Project	Working knowledge in one area of contribution
BS 🗪	Engineer	Portion of a Product/Project	Working knowledge in one area of contribution

Industry Career: Research and Industry Impact

Research

- Engage in scientific discovery, collaborate with peers, fund research (but typically later in career, possibly internal funding)
- May involve university faculty and students
- Develop creative thinking about technical solutions to problems

Technology Transfer

- Contribute to company's products, client engagement, open source, intellectual property...
- Demonstrate strong problem-solving skills
- Publish work and engage with academia

Service

- Departmental (hiring committee)
- Company–wide (promotion review board)
- Professional

Academic Career: Research, Teaching, and Service

- Research
 - Engage in scientific discovery, involve graduate and undergraduate students, <u>fund research</u>
- Teaching
 - Active teaching, mentoring, advising
- Service
 - Departmental, University, Professional (External)

Expected to do all three well!

Different Types of Colleges

- Research Universities: PhD program emphasize research, but teaching and service important
- Colleges/Universities: MS program emphasize teaching, research and service also important
- Selective Liberal Arts Colleges: BS program -emphasize teaching with research a close second, but service important
- Teaching-Oriented Colleges: BS program emphasize teaching and service but research can be expected

Academic Career Ladder

- Professorial Ranks
 - Assistant: Tenure-track, 5-7 years
 - Associate: Usually with tenure (life-time appointment)
 - Full: University-level service expected
 - Chaired Professor: Endowed
- Administrative Ranks
 - Department Chair, Dean, Provost, President
- Instructor teaching and service
- Postdoctoral/Research Associate research

What can I do now to prepare for a job in industry?

- Complete a project(s)
 - Industry has shifted considerably to applied research
- Get an internship(s)
 - Try out a corporate culture, job type, industry
 - Find mentors/supporters of your career
 - Publish your work with co-authors
- Acquire key skills
 - Build your professional network, communications, negotiation, making yourself visible
- Check your competition
 - Who is graduating soon in your field from other (top) schools?
 - Who works at this company?

What can I do now to prepare for an academic job?

Research

- Apprenticeship: learn from advisor, doing it, and others
- Grant writing
- Corporate connections for funding, student job placement

Teaching

- Teaching experience, teaching assistantship, teach some evene if you don't have to
- Professor-in-training programs, course

Service

- Organizing student organization/support groups
- Working on department committees
- Volunteering at conferences

Moving Between Research Lab and Academia

From University to Industry

- Must build real systems
- Establish visibility and knowledge in industry

From Industry to University

- Must continue publishing
- Establish visibility in research community

The B. Algorithm!

```
if (I.LoveLoveLoveProgramming)
   PursueMasters(); // industry, entrepreneurship
   else (I.LikeProgramming && I.WantMoneyBefore30) {
    if (rand(0, 1.0) < 0.6)
        FinishBachelors();
   else
        PursueMasters();
else if (I.LikeProgramming && I.BelieveTheTruthIsOutThere)
      PursuePhD(); /* research, tenure track, teaching,
   industry, labs, entrepreneurship */
else if (I.DontLikeProgramming) {
     FinishBachelors();
     BecomeASurfer();
```

All Choices Are Valid

- People move in all sorts of directions
- Start PhD program exit after Masters
- Masters continue to PhD
- Figure out what you want and then get it!

