Tag Archive: CERP Infographics

These infographics are brought to you by the CRA’s Center for Evaluating the Research Pipeline (CERP). CERP provides social science research and comparative evaluation for the computing community. To learn more about CERP, visit our website at https://cra.org/cerp/.

This material is based upon work supported by the National Science Foundation under Grant Number (CNS-1246649; DUE-1431112). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

CERP infographicCERP infographic

Which Students are Attending Technical Conferences in Computing?


CERP data indicate first year and second year students were proportionally less likely to attend a technical conference in computing over the past year compared to upper division students. This finding is important because participation in conferences may help foster engagement and retention in computing, particularly among first and second year students.

infographicinfographic

Students Believe Computing Careers Provide Less Opportunity for Family, But More Opportunities to be Influential and Altruistic


We found most undergraduate computing students believe computing careers afford ample opportunity to be in a position of influence and serve humanity. However, students believe computing careers afford relatively less opportunity to spend time with family. These findings suggest computing careers may be unattractive to groups of students who place strong value on family.

May InfographicMay Infographic

More CREU Students Attend Graduate School Compared to Other REU Students


This infographic compares post-graduation plans of undergraduate students with different REU (Research Experience for Undergraduates) experiences using CERP’s annual spring survey for graduating students. Specifically, CRA-W/CDC Alliance’s Collaborative Research Experiences for Undergraduates (CREU) participants, students who participated in other REUs, and students with no REU experience were compared in terms of whether they were attending graduate school (Master’s or Ph.D.) in the upcoming fall semester. The students included in this analysis are men from racial/ethnic groups who are underrepresented in computing and women because the CREU program is targeted specifically toward these students. Approximately the same number of women and men are in all three groups.

CERP infographicCERP infographic

Cognitive Disorders are the Most Common Disability Reported by Undergraduate Students in Computing


CERP’s 2016 Data Buddies survey collected data on students’ disability status from 6,447 undergraduate students in computing. Eight percent of these students reported having at least one type of disability. This chart illustrates that the most common disabilities are not visible. These data serve as a reminder that some computing students may be faced with an additional set of challenges in and outside of the classroom due to their disability or disabilities.

March infographicMarch infographic

Participation Rate in Computing-Related Contests Highest Among Men, and Among Asian Students


During the fall 2016 academic semester, CERP collected data from 5,208 undergraduate students currently or previously enrolled in computing courses at a sample of U.S. colleges and universities. Students were asked whether they had participated in any computing-related contests (e.g., hackathons or robotics competitions) during the past year. Some believe this type of activity can help resumes stand out and makes applicants competitive on the job market (e.g., Harnett, 2016; Mone, 2016). We found men were more likely than women, and Asian students were more likely than their peers, to report having participated in computing-related contests. To help promote a level applicant playing field, contest organizers should consider modifying recruitment strategies to target groups who are less likely to participate, such as women.

Feburary InfographicFeburary Infographic

Nearly 10 Years Later, CRA-W Career Mentoring Workshop Participants are More Advanced in their Careers Than Non-Participants


CERP recently extracted Web data to observe the career progression of women who had participated in the CRA-W’s 2008 or 2009 Career Mentoring Workshops (CMWs) compared to a sample of women who had never participated in CMWs. We obtained the comparison sample from a population of women who earned their Ph.D.s in computer science during the same time period as the participants. We collected current career information including job titles (e.g., associate professor) and job setting (e.g., academia vs. industry/labs) for both groups. We then categorized job titles as entry level (e.g., assistant professor, software engineer), mid level (e.g., associate professor, senior engineer), and senior level (e.g., professor, principal program manager), collapsed across job setting. To test for a systematic difference in job rankings between workshop participants and the comparison group, we ran a 2 (Group) x 3 (Job Title Rank) Chi-squared test and found a statistically significant difference in rankings across the two groups, χ2 (2, N = 181) = 8.46, p < 0.05. Specifically, CMW participants were less likely than non-participants to be in an entry level position, p < .05, and more likely to be in a senior level position than non-participants, p < .05.

Why students leave computingWhy students leave computing

Difficulties with Coursework Make Students Consider Leaving Computing; Job Prospects and Support from Friends and Family Help Students Stay


In CERP’s 2015 Data Buddies survey, computing majors were asked whether they had thought about changing to a non-computing major during the past year. Thirteen percent of students who responded to this question said that they had. The word clouds here were created using students’ comments about the reasons they considered leaving computing and factors that helped them stay. Some of the most frequently encountered words in students’ reasons for considering leaving computing were “classes”, “hard”, “difficult”, “work”, and “time”. On the other hand, students’ responses regarding the factors that helped them stay in computing contained words such as “job”, “degree”, and “friends”.